[ <<< Lição 5 | Lição 7 >>> ]
Lesson 6 - Foundations of Convolutional Neural Networks (27/11/2019 - UnB - Brasília)
Este tópico permite que os membros do Grupo de IA da UnB (Brasília) estudem coletivamente (em reuniões presenciais e on-line) a lição 6 (parte 1) do curso fastai , mas de um jeito aberto para ajudar também pelas questões, respostas e pelos recursos publicados todos os leitores em português interessados em DL.
Lesson Resources
- Detailed lesson notes - thanks to @hiromi
- Notebooks:
- Lesson 6 in-class discussion thread
- Lesson 6 advanced discussion
- [Lesson 6 Review - slides from TWiML Study Group 3/09/2019 See slide #5 for analysis of @Jeremy’s matrix multiplication notation]TWiML_Fastai_course1v3_lesson6.pdf (531.3 KB)
Other Resources
- 50 Years of Test (Un)fairness: Lessons for Machine Learning
- Convolutions: http://www.cs.cornell.edu/courses/cs1114/2013sp/sections/S06_convolution.pdf
- Convolution Arithmetic: https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
- Normalization: https://arthurdouillard.com/post/normalization/
- Cross entropy loss: https://gombru.github.io/2018/05/23/cross_entropy_loss/
- How CNNs work: https://brohrer.github.io/how_convolutional_neural_networks_work.html
- Image processing and computer vision: https://openframeworks.cc/ofBook/chapters/image_processing_computer_vision.html
- “Yes you should understand backprop”: https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
- BERT state-of-the-art language model for NLP: https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
- Hubel and Wiesel: https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
- Perception: https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Perception
- Implementing Grad-CAM in PyTorch: https://medium.com/@stepanulyanin/implementing-grad-cam-in-pytorch-ea0937c31e82