Share your work here ✅

Hey @mrfabulous1! Sure :slight_smile: I usually find some project where I can just get lost in it, explore it until it frustrates me, and continue until it doesn’t. Also, trying to teach and guide others at my school has really helped me make sure I know the material, as the people I am helping come in never even touching python in some cases. That takes a lot of prep work and thinking into how to help gear them into the right direction.

For the past few months also, I work roughly 1-2hrs a day on smaller projects (this was before the meetup work), just exploring what some functions do, how they work, and applying it to any dataset I could find. Since most of my research is tabular, I was going through datasets found on the UCI.

Then, I’d explore pure pytorch code papers and try to migrate it to fastai. Sometimes this is easy, eg the new optimizer LessW2020 got to work, where it’s a simple port of a function, other times it’s trying to pull full architectures from papers such as NTS-Net or Deep High Res. Again only working at most 2 hours a day so I don’t get too frustrated.

I also explore the source code and lecture notebooks. Often. How does x work. Why does x work. And why does doing y break x’s code? (What did I do wrong). Most of the time, simply tracing back what a function does answers most of my questions. And for the course notebooks, I still can’t remember how to write an image databunch from memory so I cheat (oh no!). I try to not, and if it doesn’t quite work, the course notebooks show an example for most any problem so I debug there.

I write (or try to) when I can. I haven’t lately for my blog as things have been crazy, but I found writing blogs have helped me figure out what’s the most important bits from lectures, the library, etc and also helps me to be able to explain it to others.

And lastly, for lectures (the actual fastai course). Honestly I didn’t complete course v3 for four months. Why? I focused on what I needed then, and slowly worked my way through. Doing this allowed me to not get overwhelmed with the super advanced topics at the end of the course right away, and instead focused on what I needed to learn and do at the time for my various tasks.

I know I said lastly but just came to me, also don’t be afraid to be curious. Einstein once said “ The important thing is not to stop questioning. Curiosity has its own reason for existing.” This can come in many ways such as feature engineering, playing around with the number of variables, classes, hyperparameters tuning, etc. even if someone’s done it, assume their way may not be the best, and try to see if you can outthink it. Even if that somebody is yourself! :slight_smile: I had a research project where I was trying to beat a baseline in random forests. I spent two months on it and couldn’t quite do it. I always fell 1-2% short. Then I had discovered a paper on feature engineering for sensors a few months later, revisited it with my new knowledge and practices and wound up blowing them out of the water! Patience, persistence, and curiosity is everything. While I know a decent amount about the library, there is much I don’t know, and I always remember that to stay level-headed. Everyday I’m learning something new just by playing around.

So basic sum-up:

  • Spend 1-2hrs a day on mini projects that I can get deep into for a month or two at most.
  • Look over the source code and notebooks often
  • Write blogs and lecturing geared towards those who either barely know what fastai is or are getting the basics to make sure I know it well enough and can explain it.
  • Go through the lectures and courses slowly, relistening and running the notebooks often.
  • You are your own rival. Try to outperform yourself on your projects and you will see growth.
  • Read the forum daily. Even a casual browse of a topic. I may not understand something people are talking about, but I know it exists and I can revisit it later if I need to

Hope some of that will help you or others keep going :slight_smile: I’ve only been in this for 9 months now, and doing the above has helped me solidify my comprehension of the material to a point where it’s allowed me to teach and help others at a young age (I’m still 21) and opened many research and job opportunities. It doesn’t take much to get there :slight_smile:

13 Likes