Hi all,
I’ve spent a number of months building a
workstation for machine learning. Some of the
posts I read talked about multiple GPUs.
So I bought and installed two GPUs in my motherboard.
nvidia-smi --list-gpus
GPU 0: GeForce GTX 1060 6GB (UUID: …)
GPU 1: GeForce GTX 1060 6GB (UUID: …)
I’m finally getting started on Lesson 1 of FastAI 2019
The initial code with RESNET34 worked
But skipping over the RESNET34 code, and
using RESNET50 code, I got the error:
RuntimeError: CUDA out of memory.
Tried to allocate 2.00 MiB (GPU 0; 5.93 GiB total capacity;
4.57 GiB already allocated; 2.25 MiB free; 91.03 MiB cached)
nvidia-smi
Sat Aug 29 19:42:56 2020
±----------------------------------------------------------------------------+
| NVIDIA-SMI 440.100 Driver Version: 440.100 CUDA Version: 10.2 |
|-------------------------------±---------------------±---------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 106… Off | 00000000:03:00.0 On | N/A |
| 9% 58C P8 11W / 120W | 5969MiB / 6075MiB | 0% Default |
±------------------------------±---------------------±---------------------+
| 1 GeForce GTX 106… Off | 00000000:04:00.0 Off | N/A |
| 0% 38C P8 4W / 120W | 12MiB / 6078MiB | 0% Default |
±------------------------------±---------------------±---------------------+
±----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1058 G /usr/lib/xorg/Xorg 35MiB |
| 0 1671 G /usr/lib/xorg/Xorg 390MiB |
| 0 1901 G cinnamon 116MiB |
| 0 2467 C /usr/lib/libreoffice/program/soffice.bin 63MiB |
| 0 2543 G …AAAAAAAAAAAACAAAAAAAAAA= --shared-files 156MiB |
| 0 3750 C /home/oracle/anaconda3/bin/python 5193MiB |
±----------------------------------------------------------------------------+
The code didn’t use the second GPU at all.
I was doing some reading at:
…
All this webpages mentions is:
Order of GPUs
Not how to use multiple GPUs
…
and
How to use Multiple GPUs?
Part 1 (2018)
Posts from 2017 to early 2019
With that version, some found that
it might have been beneficial
to work with 2, but not 3 or 4 GPUs
Q1:
For FastAI Course v3 - 2019,
was a solution found to use two GPUs?
Q2:
For Course v4 - 2020 (Part 1) → fastai v2
was a multi GPU solution found?
If so, please send the links.
Thanks a lot