Hi,
I’m trying to run the Lesson 1 jupyter notebook on my personal computer (with NVIDIA GPU), but even after all the requirements passed, I can’t figure out what this error message means in the first exemple:
TypeError: No loop matching the specified signature and casting
was found for ufunc add
It comes from the learn.fit(0.01, 2)
but the end of the error message mentions numpy which seems quite complicated for me as a beginner.
Did any one ran into something similar or knows what could cause this error?
Thank you for your help.
Here is the complete error message:
TypeError Traceback (most recent call last)
<ipython-input-13-e6c87b20ce86> in <module>()
2 data = ImageClassifierData.from_paths(PATH, tfms=tfms_from_model(arch, sz))
3 learn = ConvLearner.pretrained(arch, data, precompute=True)
----> 4 learn.fit(0.01, 2)
~/fastai/courses/dl1/fastai/learner.py in fit(self, lrs, n_cycle, wds, **kwargs)
300 self.sched = None
301 layer_opt = self.get_layer_opt(lrs, wds)
--> 302 return self.fit_gen(self.model, self.data, layer_opt, n_cycle, **kwargs)
303
304 def warm_up(self, lr, wds=None):
~/fastai/courses/dl1/fastai/learner.py in fit_gen(self, model, data, layer_opt, n_cycle, cycle_len, cycle_mult, cycle_save_name, best_save_name, use_clr, use_clr_beta, metrics, callbacks, use_wd_sched, norm_wds, wds_sched_mult, use_swa, swa_start, swa_eval_freq, **kwargs)
247 metrics=metrics, callbacks=callbacks, reg_fn=self.reg_fn, clip=self.clip, fp16=self.fp16,
248 swa_model=self.swa_model if use_swa else None, swa_start=swa_start,
--> 249 swa_eval_freq=swa_eval_freq, **kwargs)
250
251 def get_layer_groups(self): return self.models.get_layer_groups()
~/fastai/courses/dl1/fastai/model.py in fit(model, data, n_epochs, opt, crit, metrics, callbacks, stepper, swa_model, swa_start, swa_eval_freq, visualize, **kwargs)
160
161 if not all_val:
--> 162 vals = validate(model_stepper, cur_data.val_dl, metrics, epoch, seq_first=seq_first, validate_skip = validate_skip)
163 stop=False
164 for cb in callbacks: stop = stop or cb.on_epoch_end(vals)
~/fastai/courses/dl1/fastai/model.py in validate(stepper, dl, metrics, epoch, seq_first, validate_skip)
240 loss.append(to_np(l))
241 res.append([f(datafy(preds), datafy(y)) for f in metrics])
--> 242 return [np.average(loss, 0, weights=batch_cnts)] + list(np.average(np.stack(res), 0, weights=batch_cnts))
243
244 def get_prediction(x):
~/miniconda3/envs/fastai/lib/python3.6/site-packages/numpy/lib/function_base.py in average(a, axis, weights, returned)
381 wgt = wgt.swapaxes(-1, axis)
382
--> 383 scl = wgt.sum(axis=axis, dtype=result_dtype)
384 if np.any(scl == 0.0):
385 raise ZeroDivisionError(
~/miniconda3/envs/fastai/lib/python3.6/site-packages/numpy/core/_methods.py in _sum(a, axis, dtype, out, keepdims, initial)
34 def _sum(a, axis=None, dtype=None, out=None, keepdims=False,
35 initial=_NoValue):
---> 36 return umr_sum(a, axis, dtype, out, keepdims, initial)
37
38 def _prod(a, axis=None, dtype=None, out=None, keepdims=False,
TypeError: No loop matching the specified signature and casting
was found for ufunc add