Hi I m trying to run fastai with https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
I m facing problem in while running the kernel.
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-20-d053c1db58c5> in <module>()
----> 1 lrf=learn.lr_find(1e-5,100)
/opt/conda/lib/python3.6/site-packages/fastai-0.6-py3.6.egg/fastai/learner.py in lr_find(self, start_lr, end_lr, wds, linear)
    255         layer_opt = self.get_layer_opt(start_lr, wds)
    256         self.sched = LR_Finder(layer_opt, len(self.data.trn_dl), end_lr, linear=linear)
--> 257         self.fit_gen(self.model, self.data, layer_opt, 1)
    258         self.load('tmp')
    259 
/opt/conda/lib/python3.6/site-packages/fastai-0.6-py3.6.egg/fastai/learner.py in fit_gen(self, model, data, layer_opt, n_cycle, cycle_len, cycle_mult, cycle_save_name, best_save_name, use_clr, metrics, callbacks, use_wd_sched, norm_wds, wds_sched_mult, **kwargs)
    159         n_epoch = sum_geom(cycle_len if cycle_len else 1, cycle_mult, n_cycle)
    160         return fit(model, data, n_epoch, layer_opt.opt, self.crit,
--> 161             metrics=metrics, callbacks=callbacks, reg_fn=self.reg_fn, clip=self.clip, **kwargs)
    162 
    163     def get_layer_groups(self): return self.models.get_layer_groups()
/opt/conda/lib/python3.6/site-packages/fastai-0.6-py3.6.egg/fastai/model.py in fit(model, data, epochs, opt, crit, metrics, callbacks, stepper, **kwargs)
    104             i += 1
    105 
--> 106         vals = validate(stepper, data.val_dl, metrics)
    107         if epoch == 0: print(layout.format(*names))
    108         print_stats(epoch, [debias_loss] + vals)
/opt/conda/lib/python3.6/site-packages/fastai-0.6-py3.6.egg/fastai/model.py in validate(stepper, dl, metrics)
    126         preds,l = stepper.evaluate(VV(x), VV(y))
    127         loss.append(to_np(l))
--> 128         res.append([f(preds.data,y) for f in metrics])
    129     return [np.mean(loss)] + list(np.mean(np.stack(res),0))
    130 
/opt/conda/lib/python3.6/site-packages/fastai-0.6-py3.6.egg/fastai/model.py in <listcomp>(.0)
    126         preds,l = stepper.evaluate(VV(x), VV(y))
    127         loss.append(to_np(l))
--> 128         res.append([f(preds.data,y) for f in metrics])
    129     return [np.mean(loss)] + list(np.mean(np.stack(res),0))
    130 
/opt/conda/lib/python3.6/site-packages/fastai-0.6-py3.6.egg/fastai/metrics.py in accuracy(preds, targs)
      8 def accuracy(preds, targs):
      9     preds = torch.max(preds, dim=1)[1]
---> 10     return (preds==targs).float().mean()
     11 
     12 def accuracy_thresh(thresh):
/opt/conda/lib/python3.6/site-packages/torch/tensor.py in __eq__(self, other)
    358 
    359     def __eq__(self, other):
--> 360         return self.eq(other)
    361 
    362     def __ne__(self, other):
TypeError: eq received an invalid combination of arguments - got (torch.cuda.FloatTensor), but expected one of:
 * (int value)
      didn't match because some of the arguments have invalid types: (!torch.cuda.FloatTensor!)
 * (torch.cuda.LongTensor other)
      didn't match because some of the arguments have invalid types: (!torch.cuda.FloatTensor!)
I m not sure where I have gone wrong in reading the image with custom open_image
def open_image(loc):
    if isinstance(loc, str):
        loc = loc + '.dcm'
    else: # posix path
        loc = loc.as_posix()
    img_arr = pydicom.read_file(loc).pixel_array
    img_arr = img_arr/img_arr.max()
    img_arr = (255*img_arr).clip(0, 255)#.astype(np.int32)
    img_arr = Image.fromarray(img_arr).convert('RGB') # model expects 3 channel image
    return np.array(img_arr)
It seems to be issue with accuracy method.
pred=
0.0320  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0166  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.7434  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0001  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0000  0.0000  1.0000  1.0000  1.0000  0.0000
 0.0016  0.0000  1.0000  1.0000  1.0000  0.0000
[torch.cuda.FloatTensor of size 20x6 (GPU 0)]
targs=
 0     0     0     1     0     0
    0     1     0     0     0     1
    1     1     1     1     1     1
    0     1     0     0     0     1
    1     1     1     1     1     1
    0     1     0     0     0     1
    1     1     1     1     1     1
    0     0     0     1     0     0
    0     0     0     1     0     0
    0     0     0     1     0     0
    0     1     0     0     0     1
    0     0     0     1     0     0
    0     0     0     1     0     0
    0     1     0     0     0     1
    0     1     0     0     0     1
    0     0     0     1     0     0
    0     0     0     1     0     0
    1     1     1     1     1     1
    0     0     0     1     0     0
    1     1     1     1     1     1
[torch.LongTensor of size 20x6]
the accuracy func is,
/opt/conda/lib/python3.6/site-packages/fastai-0.6-py3.6.egg/fastai/metrics.py in accuracy(preds, targs)
      8 def accuracy(preds, targs):
      9     preds = torch.max(preds, dim=1)[1]
---> 10     return (preds==targs).float().mean()
You can see my kernel at https://www.kaggle.com/nikhilikhar/rsna-with-fastai