Hi *,
I’m facing a problem of finding out how to treat my data and how to train on it for a regression problem.
The data is a list of cells (may refer them as pixels if you wish) with a value per cell. These cells form a 5 layers object in real life as each layer can be represented by a matrix. Each data object has a value for it thus my final goal is given these 5 layers, predict a single value.
I would love to hear how you think I should approach this?
My thoughts:

Construct a Rank5 Tensor and try to train a CNN on it. Is it possible “out of the box” in fastai? Tried but didn’t managed to actually call the fit function
RuntimeError: The size of tensor a (5) must match the size of tensor b (3) at nonsingleton dimension 1

Construct a Rank2 Tensor with every layer on the diagonal thus having an image to work with as a usual cnn. Couple issues here, first, the layers have some relations between them, meaning the center value of each one is related to the next/previous. Second, if I do choose to do so, make it a grey scale img and every pixel value maps to the real value?
The attached image show such a cage.
Thank you