How could we implement GeneralRelu from lesson 10 or 11 in Swift, I tried the following
public struct GeneralReLU {
public var leakOptional: Float? // slope for X when it's negative
public var subOptional: Float? // value used to substract from final result
public var maxvOptional: Float? // maximum value
public init(_ leak: Float? = nil, _ sub: Float? = nil, _ maxv: Float? = nil) {
self.leakOptional = leak
self.subOptional = sub
self.maxvOptional = maxv
}
@differentiable
func applied(to input: Tensor<Float>) -> Tensor<Float> {
var output = max(input, 0)
if let leak = self.leakOptional {
output += min(input, 0) * leak
}
if let sub = self.subOptional {
output -= sub
}
if let maxv = self.maxvOptional {
output = min(output, maxv)
}
return output
}
}
But I’m getting this error
error: <Cell 27>:14:6: error: function is not differentiable
@differentiable
~^~~~~~~~~~~~~~
<Cell 27>:15:10: note: when differentiating this function definition
func applied(to input: Tensor<Float>) -> Tensor<Float> {
^
<Cell 27>:17:28: note: differentiating control flow is not supported yet
if let leak = self.leakOptional {
^
One simple approach would be to avoid nil by using some defaults, e.g. default to 0 for leak, and to Int.Max for maxv, and to 0 for sub. Then you don’t need any conditionals.
public struct GeneralReLU {
public var leak: Float // slope for X when it's negative
public var sub: Float // value used to substract from final result
public var maxv: Float // maximum value
public init(_ leak: Float = 0.0, _ sub: Float = 0.0, _ maxv: Float =
Float.greatestFiniteMagnitude) {
self.leak = leak
self.sub = sub
self.maxv = maxv
}
@differentiable
func applied(to input: Tensor<Float>) -> Tensor<Float> {
return min(max(input, 0) + (min(input, 0) * leak) - sub, maxv)
}
}
error: <Cell 26>:14:6: error: function is not differentiable
@differentiable
~^~~~~~~~~~~~~~
<Cell 26>:15:10: note: when differentiating this function definition
func applied(to input: Tensor<Float>) -> Tensor<Float> {
^
<Cell 26>:19:20: note: cannot differentiate an external function that has not been marked '@differentiable'
return min(max(input, 0) + min(input, 0) * self.leak - self.sub, self.maxv)
^
error: <Cell 26>:14:6: error: function is not differentiable
@differentiable
~^~~~~~~~~~~~~~
<Cell 26>:15:10: note: when differentiating this function definition
func applied(to input: Tensor<Float>) -> Tensor<Float> {
^
<Cell 26>:19:20: note: expression is not differentiable
return min(max(input, 0) + min(input, 0) * self.leak - self.sub, self.maxv)
^
rxwei
(Richard Wei (Swift for TensorFlow team))
#7
min(_:_:) and max(_:_:) that take a scalar on one side are defined here:
They are not marked @differentiable yet, but they should be. We’ll make sure it’s part of the next release!
In the meantime, the variants of min(_:_:) and max(_:_:) that take Tensors on both sides do have a derivative. As a workaround, you can turn scalars into a Tensor first.
it turns out having everything in one I got this error
error: <Cell 27>:19:16: error: the compiler is unable to type-check this expression in reasonable time; try breaking up the expression into distinct sub-expressions
return min(max(input, Tensor(0)) + min(input, Tensor(0)) * self.leak - self.sub, Tensor(self.maxv))
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I turned the expression into the following and now it’s not complaining any more
let positives = max(input, Tensor(0))
let leaked = min(input, Tensor(0)) * self.leak
return min(positives + leaked - self.sub, Tensor(self.maxv))
@rxwei Collab kernel is reliably crashing when I make GeneralReLU extend Layer like this
struct GeneralReLU: Layer {
var leak: Float // slope for X when it's negative
var sub: Float // value used to substract from final result
var maxv: Float // maximum value
init(_ leak:Float = 0.0, _ sub:Float = 0.0, _ maxv:Float = Float.greatestFiniteMagnitude) {
self.leak = leak
self.sub = sub
self.maxv = maxv
}
@differentiable
func applied(to input: Tensor<Float>, in context: Context) -> Tensor<Float> {
let positives = max(input, Tensor(0))
let leaked = min(input, Tensor(0)) * self.leak
return min(positives + leaked - self.sub, Tensor(self.maxv))
}
}
If I don’t extend Layer then the cell finishes with no errors!
Same things for this standalone function, kernel crashes reliably:
rxwei
(Richard Wei (Swift for TensorFlow team))
#10
I noticed from your API usage (applied(to:in:)) that you are using v0.2, which is an older release of Swift for TensorFlow. The issue may have been fixed in v0.3. I tried it and can’t reproduce the crash.
Here’s a slightly modified version of your code that uses v0.3 APIs (call(_:) instead of applied(to:in:)).
import TensorFlow
struct GeneralReLU: Layer {
var leak: Float // slope for X when it's negative
var sub: Float // value used to substract from final result
var maxv: Float // maximum value
init(_ leak:Float = 0.0, _ sub:Float = 0.0, _ maxv:Float = Float.greatestFiniteMagnitude) {
self.leak = leak
self.sub = sub
self.maxv = maxv
}
@differentiable
func call(_ input: Tensor<Float>) -> Tensor<Float> {
let positives = max(input, Tensor(0))
let leaked = min(input, Tensor(0)) * self.leak
return min(positives + leaked - self.sub, Tensor(self.maxv))
}
}
You can follow the instructions here to get newer builds in Colab:
Thanks again @rxwei I guess you’re right i’m on an older version as you solution does not even compile, I see this error
error: <Cell 11>:4:8: error: type 'GeneralReLU' does not conform to protocol 'Layer'
struct GeneralReLU: Layer {
^
TensorFlow.Layer:2:20: note: protocol requires nested type 'Input'; do you want to add it?
associatedtype Input : Differentiable
^
TensorFlow.Layer:3:20: note: protocol requires nested type 'Output'; do you want to add it?
associatedtype Output : Differentiable
Is there a way (or a variable) that contains current swift for tensforlow version, it could be helpful to print it at the beginning of the kernel.
rxwei
(Richard Wei (Swift for TensorFlow team))
#12
Yeah, this is a good idea. You can kinda already do it, see my post here: S4TF in colab (error)
It would be nice if the commit hash and version string were exposed as variables in Swift itself so that you can query them from a running swift notebook. I don’t know if they are. Finding and/or exposing them might be a good starter task for someone interested in hacking the Swift compiler/stdlib!