Hi all, I’d like to use AWD_LSTM (shown below) to train a language model. We have three inputs: mRNA sequence, structure, looptype, but this model can only take one kind of input (e.g. mRNA sequence). The length of the three kinds of inputs are same, which are all 107.

How to modify the model code so that it can take in 3 input?

My input shape of a 64 size batch is torch.Size([64, 107, 3]) , but this model can only take torch.Size([64, 107]) and returns torch.Size([64, 107, 32]) while 32 is the vocab size.

I want to train the sequence of three kinds of inputs in language model, instead of only one input (mRNA sequences). How to modify the code? Thanks.

model structure for a vocab size of 32:

```
SequentialRNN(
(0): AWD_LSTM(
(encoder): Embedding(32, 400, padding_idx=1)
(encoder_dp): EmbeddingDropout(
(emb): Embedding(32, 400, padding_idx=1)
)
(rnns): ModuleList(
(0): WeightDropout(
(module): LSTM(400, 1152, batch_first=True, bidirectional=True)
)
(1): WeightDropout(
(module): LSTM(1152, 1152, batch_first=True)
)
(2): WeightDropout(
(module): LSTM(1152, 400, batch_first=True)
)
)
(input_dp): RNNDropout()
(hidden_dps): ModuleList(
(0): RNNDropout()
(1): RNNDropout()
(2): RNNDropout()
)
)
(1): LinearDecoder(
(decoder): Linear(in_features=400, out_features=32, bias=True)
(output_dp): RNNDropout()
)
)
class AWD_LSTM(Module):
initrange=0.1
def __init__(self, vocab_sz, emb_sz, n_hid, n_layers, pad_token=1, hidden_p=0.2, input_p=0.6, embed_p=0.1,
weight_p=0.5, bidir=False):
store_attr('emb_sz,n_hid,n_layers,pad_token')
self.bs = 1
self.n_dir = 2 if bidir else 1
self.encoder = nn.Embedding(vocab_sz, emb_sz, padding_idx=pad_token)
self.encoder_dp = EmbeddingDropout(self.encoder, embed_p)
self.rnns = nn.ModuleList([self._one_rnn(emb_sz if l == 0 else n_hid, (n_hid if l != n_layers - 1 else emb_sz)//self.n_dir,
bidir, weight_p, l) for l in range(n_layers)])
self.encoder.weight.data.uniform_(-self.initrange, self.initrange)
self.input_dp = RNNDropout(input_p)
self.hidden_dps = nn.ModuleList([RNNDropout(hidden_p) for l in range(n_layers)])
self.reset()
def forward(self, inp, from_embeds=False):
bs,sl = inp.shape[:2] if from_embeds else inp.shape
if bs!=self.bs: self._change_hidden(bs)
output = self.input_dp(inp if from_embeds else self.encoder_dp(inp))
new_hidden = []
for l, (rnn,hid_dp) in enumerate(zip(self.rnns, self.hidden_dps)):
output, new_h = rnn(output, self.hidden[l])
new_hidden.append(new_h)
if l != self.n_layers - 1: output = hid_dp(output)
self.hidden = to_detach(new_hidden, cpu=False, gather=False)
return output
def _change_hidden(self, bs):
self.hidden = [self._change_one_hidden(l, bs) for l in range(self.n_layers)]
self.bs = bs
def _one_rnn(self, n_in, n_out, bidir, weight_p, l):
"Return one of the inner rnn"
rnn = nn.LSTM(n_in, n_out, 1, batch_first=True, bidirectional=bidir)
return WeightDropout(rnn, weight_p)
def _one_hidden(self, l):
"Return one hidden state"
nh = (self.n_hid if l != self.n_layers - 1 else self.emb_sz) // self.n_dir
return (one_param(self).new_zeros(self.n_dir, self.bs, nh), one_param(self).new_zeros(self.n_dir, self.bs, nh))
def _change_one_hidden(self, l, bs):
if self.bs < bs:
nh = (self.n_hid if l != self.n_layers - 1 else self.emb_sz) // self.n_dir
return tuple(torch.cat([h, h.new_zeros(self.n_dir, bs-self.bs, nh)], dim=1) for h in self.hidden[l])
if self.bs > bs: return (self.hidden[l][0][:,:bs].contiguous(), self.hidden[l][1][:,:bs].contiguous())
return self.hidden[l]
def reset(self):
"Reset the hidden states"
[r.reset() for r in self.rnns if hasattr(r, 'reset')]
self.hidden = [self._one_hidden(l) for l in range(self.n_layers)]
```