How to evaluate model on test set?

Hi, I’m new to fastai, is there a simple way to evaluate a model on test set ?

I found this thread but the code seems valid for fastaiv1 and it does not provide any simple solution.

PS: How come we have to struggle to have a solution to such a basic question for such a popular framework ?

is there a simple way to evaluate a model on test set ?

Essentially this is like your deployed-runtime-mode.
Use get_preds() as suggested in this answer in your other thread
and also described for Batch Prediction

Now I just want to check you are familiar with fastai context for these terms, watch Lesson 4 at 45:11 where Jeremy advises “perhaps the most important idea in machine learning is the idea of having separate training, validation and test data sets…”

1 Like

Thank you for your answer.

get_preds help obtaining predictions on test set but it doesn’t help for accuracy calculation on test set. if it does, can you please provide me some code snippet to do so.
How can I get accuracy (directly) on test set ?

I really don’t understand why there’s such a burden to this question (I am not the first to ask apparently), accuracy on test set is a proxy to how well the model will perform on production and validation accuracy is not sufficient to tell it because we could have overfitted hyperparameters on it.

Why is data.test not available like data.train and data.valid ?

I tried loading test set in a new dataloader but results are not consistent.

test_data = ImageDataLoaders.from_folder(data_directory,train='test',valid='train')

Sorry if those are dumb questions.

1 Like

For some reason it still needs a bit of collecting different pieces of the puzzle, but in the end this worked for me. After the standard training of the model with a train and valid data set, you can get the accuracy with a new set of data (test set) as follows:

tst_files = get_image_files(path/"test")
tst_dl = dls.test_dl(tst_files, with_labels=True)
preds, y = learn.get_preds(dl=tst_dl)
acc = accuracy(preds, y)
acc2 = learn.validate(dl=tst_dl)

acc equals 1 - acc2[1].