fastcore 0.1.17 with Ubuntu 19 VBox in Win10
nbdev_test_nbs
make: nbdev_test_nbs: Command not found
make: *** [Makefile:17: test] Error 127
Get Error when starting the test. I started NB anyway, it seems worked fine until the fit_one_cycle box:
ssertionError Traceback (most recent call last)
~/fastai2/fastai2/learner.py in fit(self, n_epoch, lr, wd, cbs, reset_opt)
195 try:
–> 196 self._do_begin_fit(n_epoch)
197 for epoch in range(n_epoch):
~/fastai2/fastai2/learner.py in _do_begin_fit(self, n_epoch)
169 def _do_begin_fit(self, n_epoch):
–> 170 self.n_epoch,self.loss = n_epoch,tensor(0.); self(‘begin_fit’)
171
~/fastai2/fastai2/learner.py in call(self, event_name)
133
–> 134 def call(self, event_name): L(event_name).map(self._call_one)
135 def _call_one(self, event_name):
~/fastcore/fastcore/foundation.py in map(self, f, *args, **kwargs)
374 else f.getitem)
–> 375 return self._new(map(g, self))
376
~/fastcore/fastcore/foundation.py in _new(self, items, *args, **kwargs)
325 def _xtra(self): return None
–> 326 def _new(self, items, *args, **kwargs): return type(self)(items, *args, use_list=None, **kwargs)
327 def getitem(self, idx): return self._get(idx) if is_indexer(idx) else L(self._get(idx), use_list=None)
~/fastcore/fastcore/foundation.py in call(cls, x, args, **kwargs)
46
—> 47 res = super().call(((x,) + args), **kwargs)
48 res._newchk = 0
~/fastcore/fastcore/foundation.py in init(self, items, use_list, match, *rest)
316 if (use_list is not None) or not _is_array(items):
–> 317 items = list(items) if use_list else _listify(items)
318 if match is not None:
~/fastcore/fastcore/foundation.py in _listify(o)
252 if isinstance(o, str) or _is_array(o): return [o]
–> 253 if is_iter(o): return list(o)
254 return [o]
~/fastcore/fastcore/foundation.py in call(self, *args, **kwargs)
218 fargs = [args[x.i] if isinstance(x, _Arg) else x for x in self.pargs] + args[self.maxi+1:]
–> 219 return self.fn(*fargs, **kwargs)
220
~/fastai2/fastai2/learner.py in _call_one(self, event_name)
136 assert hasattr(event, event_name)
–> 137 [cb(event_name) for cb in sort_by_run(self.cbs)]
138
~/fastai2/fastai2/learner.py in (.0)
136 assert hasattr(event, event_name)
–> 137 [cb(event_name) for cb in sort_by_run(self.cbs)]
138
~/fastai2/fastai2/callback/core.py in call(self, event_name)
23 (self.run_valid and not getattr(self, ‘training’, False)))
—> 24 if self.run and _run: getattr(self, event_name, noop)()
25 if event_name==‘after_fit’: self.run=True #Reset self.run to True at each end of fit
~/fastai2/fastai2/callback/fp16.py in begin_fit(self)
84 def begin_fit(self):
—> 85 assert self.dls.device.type == ‘cuda’, "Mixed-precision training requires a GPU, remove the call to_fp16
"
86 if self.learn.opt is None: self.learn.create_opt()
AssertionError: Mixed-precision training requires a GPU, remove the call to_fp16
During handling of the above exception, another exception occurred:
AttributeError Traceback (most recent call last)
in
----> 1 learn.fit_one_cycle(4)
~/fastcore/fastcore/utils.py in _f(*args, **kwargs)
428 init_args.update(log)
429 setattr(inst, ‘init_args’, init_args)
–> 430 return inst if to_return else f(*args, **kwargs)
431 return _f
432
~/fastai2/fastai2/callback/schedule.py in fit_one_cycle(self, n_epoch, lr_max, div, div_final, pct_start, wd, moms, cbs, reset_opt)
111 scheds = {‘lr’: combined_cos(pct_start, lr_max/div, lr_max, lr_max/div_final),
112 ‘mom’: combined_cos(pct_start, *(self.moms if moms is None else moms))}
–> 113 self.fit(n_epoch, cbs=ParamScheduler(scheds)+L(cbs), reset_opt=reset_opt, wd=wd)
114
115 # Cell
~/fastcore/fastcore/utils.py in _f(*args, **kwargs)
428 init_args.update(log)
429 setattr(inst, ‘init_args’, init_args)
–> 430 return inst if to_return else f(*args, **kwargs)
431 return _f
432
~/fastai2/fastai2/learner.py in fit(self, n_epoch, lr, wd, cbs, reset_opt)
204
205 except CancelFitException: self(‘after_cancel_fit’)
–> 206 finally: self(‘after_fit’)
207
208 def validate(self, ds_idx=1, dl=None, cbs=None):
~/fastai2/fastai2/learner.py in call(self, event_name)
132 def ordered_cbs(self, event): return [cb for cb in sort_by_run(self.cbs) if hasattr(cb, event)]
133
–> 134 def call(self, event_name): L(event_name).map(self._call_one)
135 def _call_one(self, event_name):
136 assert hasattr(event, event_name)
~/fastcore/fastcore/foundation.py in map(self, f, *args, **kwargs)
373 else f.format if isinstance(f,str)
374 else f.getitem)
–> 375 return self._new(map(g, self))
376
377 def filter(self, f, negate=False, **kwargs):
~/fastcore/fastcore/foundation.py in _new(self, items, *args, **kwargs)
324 @property
325 def _xtra(self): return None
–> 326 def _new(self, items, *args, **kwargs): return type(self)(items, *args, use_list=None, **kwargs)
327 def getitem(self, idx): return self._get(idx) if is_indexer(idx) else L(self._get(idx), use_list=None)
328 def copy(self): return self._new(self.items.copy())
~/fastcore/fastcore/foundation.py in call(cls, x, args, **kwargs)
45 return x
46
—> 47 res = super().call(((x,) + args), **kwargs)
48 res._newchk = 0
49 return res
~/fastcore/fastcore/foundation.py in init(self, items, use_list, match, *rest)
315 if items is None: items = []
316 if (use_list is not None) or not _is_array(items):
–> 317 items = list(items) if use_list else _listify(items)
318 if match is not None:
319 if is_coll(match): match = len(match)
~/fastcore/fastcore/foundation.py in _listify(o)
251 if isinstance(o, list): return o
252 if isinstance(o, str) or _is_array(o): return [o]
–> 253 if is_iter(o): return list(o)
254 return [o]
255
~/fastcore/fastcore/foundation.py in call(self, *args, **kwargs)
217 if isinstance(v,_Arg): kwargs[k] = args.pop(v.i)
218 fargs = [args[x.i] if isinstance(x, _Arg) else x for x in self.pargs] + args[self.maxi+1:]
–> 219 return self.fn(*fargs, **kwargs)
220
221 # Cell
~/fastai2/fastai2/learner.py in _call_one(self, event_name)
135 def _call_one(self, event_name):
136 assert hasattr(event, event_name)
–> 137 [cb(event_name) for cb in sort_by_run(self.cbs)]
138
139 def _bn_bias_state(self, with_bias): return bn_bias_params(self.model, with_bias).map(self.opt.state)
~/fastai2/fastai2/learner.py in (.0)
135 def _call_one(self, event_name):
136 assert hasattr(event, event_name)
–> 137 [cb(event_name) for cb in sort_by_run(self.cbs)]
138
139 def _bn_bias_state(self, with_bias): return bn_bias_params(self.model, with_bias).map(self.opt.state)
~/fastai2/fastai2/callback/core.py in call(self, event_name)
22 _run = (event_name not in _inner_loop or (self.run_train and getattr(self, ‘training’, True)) or
23 (self.run_valid and not getattr(self, ‘training’, False)))
—> 24 if self.run and _run: getattr(self, event_name, noop)()
25 if event_name==‘after_fit’: self.run=True #Reset self.run to True at each end of fit
26
~/fastai2/fastai2/callback/progress.py in after_fit(self)
37 def after_fit(self):
38 if getattr(self, ‘mbar’, False):
—> 39 self.mbar.on_iter_end()
40 delattr(self, ‘mbar’)
41 self.learn.logger = self.old_logger
~/anaconda3/envs/fastai2/lib/python3.7/site-packages/fastprogress/fastprogress.py in on_iter_end(self)
155 total_time = format_time(time.time() - self.main_bar.start_t)
156 self.text = f’Total time: {total_time}
’ + self.text
–> 157 self.out.update(HTML(self.text))
158
159 def add_child(self, child):
AttributeError: ‘NBMasterBar’ object has no attribute ‘out’
Please advise.