Study Group in French

(Benoit) #40

Merci @pierreguillou.
Je vais me présenter aussi : Je bosse depuis 20 ans dans le dev, principalement sur des projets web en tant que chef de projet technique. En ce moment je suis freelance sur du big data et j’aimerais évoluer vers des projets de Deep Learning. Le computer vision me passionne aussi mais il faut savoir que ce qui intéresse majoritairement les entreprises c’est l’analyse de données structurées (base de données d’historique de ventes par exemple), puis le NLP et en dernier lieu les images.

@Mathieu : pas facile de conseiller une machine : il faut prendre le plus gros GPU que tu puisses t’offrir, mais ça périme vite aussi alors une GTX 1070 n’est pas un mauvais choix car il y a quand même 8Go. Pour la RAM assure toi de pouvoir ajouter 16Go si besoin plus tard car 32Go peuvent être bénéfique pour le machine learning classique avec Pandas. Mais ça n’a rien d’obligatoire.
Personnellement j’ai une bête de course avec 32 cœurs, 32Go de RAM, SSD NVME et GTX1080ti. Donc pas trop dans le budget d’un étudiant…
Vu le prix du matos acheter une machine correcte comme tu le proposes est un bon choix. Rien ne t’empêche quand tu as trouvé les bons paramètres en local de louer du cloud pour faire tourner ton modèle sur des machines plus grosses.

1 Like

(Matthieu Dutel) #41

Merci beaucoup @Benoit_c pour tes conseils!

0 Likes

(Ahmed Sahraoui) #42

Bonjour, pour ceux qui sont sur Lyon,ça vous dit qu’on crée un groupe de travail ?

0 Likes

(Benoit) #43

Bonsoir,
J’ai partagé mon code et mon dataset de classification d’avions A380 et B747 : https://forums.fast.ai/t/lesson-1-beat-google-auto-ml-at-b747-vs-a380/27764
Il y a encore beaucoup à faire alors toute aide sera la bienvenue :wink:

0 Likes

(Nathan Hubens) #44

Salut Pierre,

Où as-tu trouvé les liens pour la vidéo, ils ont été posté sur le forum ? Ce serait une bonne chose si les vidéos sont systématiquement postées le lendemain (ça éviterait de se lever à 3h du matin :slight_smile: )

0 Likes

(Pierre Guillou) #45

Bonjour Nathan,
les liens principaux (video, doc, notebooks…) ont été publiés dans le thread Lesson 1: class discussion and resources et ne peuvent pas être publiés en dehors du forum (Jeremy le fera début janvier). J’ai juste ajouté le temps pour accéder directement à certaines parties. Si Jeremy suit le même déroulé que pour les versions précédentes, le lien vers la video sera immédiatement posté sur le forum après le cours… ce qui est sympa en effet :slight_smile:

0 Likes

(Nathan Hubens) #47

Ah ok, je n’avais pas vu que ça avait été ajouté au Wiki thread, merci ! :slight_smile:

0 Likes

(Michael Choudhury) #48

Merci, Pierre, pour cette timeline de la video qui est tellement utile!

0 Likes

(Benoit) #49

Voici le lien pour le Hangout de ce soir 21h (heure de Paris): https://hangouts.google.com/call/9Jf5bBO3qAJeYb4Dtp-XAAEI

0 Likes

(Benoit) #50

Je n’arrive pas a utiliser mon lien, autre tentative : https://hangouts.google.com/call/myowXXPFIVz72fSMcWRNAAEI

0 Likes

(Kaspar Lund) #51

https://twitter.com/samcharrington?lang=da

0 Likes

(Benoit) #52

Moteur de recherche de dataset :
https://toolbox.google.com/datasetsearch

2 Likes

(Kaspar Lund) #53

voice l’article de leslie smidth: https://arxiv.org/abs/1803.09820

1 Like

#54

En lien avec l’article proposé par Kaspar, voir l’explication très intéressante de sgugger sur la fonction learner.fit_one_cycle() :
https://sgugger.github.io/the-1cycle-policy.html#the-1cycle-policy

Concernant la fonction data.normalize():
Lors de l’entraînement, doit-on utiliser la moyenne et l’écart-type de l’ensemble du jeu de données ou seulement du jeu d’entraînement?

Lors de la prédiction, qu’utilise-t-on alors pour la normalisation de l’image à prédire:
-la moyenne et l’écart-type du jeu d’entraînement?
-la moyenne et l’écart-type de l’ensemble du jeu de données?
-la moyenne et l’écart-type de l’image à prédire?

0 Likes

(Kaspar Lund) #55

en pratique jeremy calcule le moyenne et std sur l’ensembe de donnes. apres chaque image est normalisee comme (image-moyenne)/std

0 Likes

#56

ok merci

0 Likes

#57

Même remarque que pour l’autre timeline :wink:

0 Likes

#58

Petite correction, la moyenne et l’écart-type sont plutôt calculées sur l’ensemble d’entrainement (l’ensemble de validation devant être laissé à l’écart le plus possible). En pratique cependant, si l’ensemble de validation est proprement choisi, on trouve le même résultat avec le calcul sur tout l’ensemble ou just l’ensemble d’entrainement.

2 Likes

(Pierre Guillou) #59

Merci Sylvain pour ton message (et pour ton article !). Je viens de faire la correction dans la timeline de la manière suivante :

(explication du papier de Leslie Smith dans l’article de @sgugger : The 1cycle policy)

1 Like

(Benoit) #60

De ma compréhension c’est sur le jeux d’entrainement qu’on doit le calculer. Puis on l’applique à chaque donnée qui est présentée au modèle pour réaliser les prédictions.
Par contre dans le cas où on fait du fine-tuning (utilisation d’un réseau pré entrainé) j’aurais tendance à dire qu’on applique les corrections du jeux d’entrainement initiales pour éviter de trop perturber le modèle.
J’imagine que tout dépend de la proportion dans laquelle on souhaite changer le modèle. Si on a beaucoup de données et qu’elles différent de celles du pré-entrainement surement qu’il faut refaire la normalisation… A tester !

0 Likes