Hi,
I think this error is from the metrics part.
Error_rate call accuracy which is =
def accuracy(input:Tensor, targs:Tensor)->Rank0Tensor:
"Compute accuracy with `targs` when `input` is bs * n_classes."
n = targs.shape[0]
input = input.argmax(dim=-1).view(n,-1)
targs = targs.view(n,-1)
return (input==targs).float().mean()
try to create your own accuracy function:
def my_accuracy(input:Tensor, targs:Tensor)->Rank0Tensor:
"Compute accuracy with `targs` when `input` is bs * n_classes."
n = targs.shape[0]
input = input.argmax(dim=-1).view(n,-1)
targs = targs.view(n,-1)
return (input==targs).float().mean()#Error from here. Try to correct the conversion for your case
def my_error_rate(input:Tensor, targs:Tensor)->Rank0Tensor:
"1 - `accuracy`"
return 1 - my_accuracy(input, targs)
learn = create_cnn(data, models.resnet50,metrics=my_error_rate)
You can check this: