Lesson-1-pets Benchmarks

Adding my own measurments to the list (the low end…)
and who needs spreadsheets, we have markdown :wink:
My 1060 measurements closely mirror those of @Edward (but I was able to use bs=32)

Single GPU Benchmarks

Task 1050 1060 1080 Ti 2080 Ti K80 V100*
GPU Mem 4 GB 6 GB 11 GB 11GB 12GB 16GB
CUDA - Driver 9.2 - 396.54 9.2 396.54
System Dell XPS-15 AWS p2.xl Sagemaker p3.2xl
CPU i7-7700HQ@2.8 i5-7600K@3.8 Intel 6850K i7-7700K E5-2686 ?
RAM 16GB 16GB 64GB 32GB 61GB 61GB
Storage f. training data Samsung NVMe SSD Samsung Nvme 960 Samsung SM961 NVMe SSD SSD
OS Ubuntu 18.04.1 Ubuntu 18.04.1 Ubuntu 18.04.1 Ubuntu 18.04.1 Ubuntu 16.04.5 ?
resnet34 (bs=64) fp
F learn.fit_one_cycle(4) 04:03 02:01 01:10 01:23 03:55 01:56
U learn.fit_one_cycle(1) 01:22 00:40 00:21 01:02 00:29
resnet50 (bs=48)
F learn.fit_one_cycle(5) 17:24¹ 09:02² 04:21 03:21 15:45 03:41
F learn.fit_one_cycle(5) fp16 02:46
U learn.fit_one_cycle(1) sl(1e-6,1e-4) 04:52¹ 02:24² 01:09 00:51 04:04 00:46
U learn.fit_one_cycle(1) sl(1e-6,1e-4) fp16 00:40

¹ bs=16
² bs=32
F = frozen, U = learn.unfreeze()

* V100 taken from the v3 lesson 1 (Jeremy runs ml.p3.2xl on sagemaker as can be seen in the video)

8 Likes