Lesson 1 In-Class Discussion

@memetzgz, ok. Thanks for your response.

Where are results stored after running the course1 notebook in crestle environment? I like to see the output. (predicted labels for images under ‘test’ directory).

So I’m running into this:

AssertionError                            Traceback (most recent call last)
<ipython-input-12-d4fe8b8bb391> in <module>()
      3 # Setting requires_grad=False indicates that we do not need to compute gradients
      4 # with respect to these Variables.
----> 5 x = Variable(x.type(dtype), requires_grad=False)
      6 y = Variable(y.type(dtype), requires_grad=False)

/home/ubuntu/anaconda3/lib/python3.5/site-packages/torch/_utils.py in _type(self, new_type, async)
     33     if new_type.is_sparse:
     34         raise RuntimeError("Cannot cast dense tensor to sparse tensor")
---> 35     return new_type(self.size()).copy_(self, async)

/home/ubuntu/anaconda3/lib/python3.5/site-packages/torch/cuda/__init__.py in _lazy_new(cls, *args, **kwargs)
    264 @staticmethod
    265 def _lazy_new(cls, *args, **kwargs):
--> 266     _lazy_init()
    267     # We need this method only for lazy init, so we can remove it
    268     del _CudaBase.__new__

/home/ubuntu/anaconda3/lib/python3.5/site-packages/torch/cuda/__init__.py in _lazy_init()
     82         raise RuntimeError(
     83             "Cannot re-initialize CUDA in forked subprocess. " + msg)
---> 84     _check_driver()
     85     torch._C._cuda_init()
     86     torch._C._cuda_sparse_init()

/home/ubuntu/anaconda3/lib/python3.5/site-packages/torch/cuda/__init__.py in _check_driver()
     56 Found no NVIDIA driver on your system. Please check that you
     57 have an NVIDIA GPU and installed a driver from
---> 58 http://www.nvidia.com/Download/index.aspx""")
     59         else:
     60             # TODO: directly link to the alternative bin that needs install

Found no NVIDIA driver on your system. Please check that you
have an NVIDIA GPU and installed a driver from

I’m running on a p2 instance on AWS, so very much have a GPU! a bit stumped on what to do

Watching a lecture right now from Yann LeCun :slight_smile:




For how many lessons will Crestle be an acceptable environment?

If not optimum for all lessons, then will another AWS AMI be setup?

I am asking since the current AWS AMI requires a lot of setup adjustment as you are already aware. I do believe that this activity is a great learning step. But I also need to spend effort on lesson1 to start the deep learning mindfulness. The Crestle environment serves this purpose right now for me.

Thank you,

Python 3.63
It worked for a while and after installing labextension I got this error

Crestle will be fine for the whole course. I’m setting up an AMI right now, which will not require any extra setup to use.


Thank you Mr. @jeremy for this AMI, i am waiting for this.


@jeremy @yinterian Has the data set for cats vs dogs changed from v1?


1 Like

Hi santhaman

As we are running a fastai environment under Anaconda, I am confused about adding missing libraries like OpenCV. Do we add them after activating the fastai environment, or exit to our main Python 3.6 and install them there?

You can install them after you activate the environment or

    conda install -n <env_name>  <package>

If you are in the environment you can also use pip.

Thanks for that advice! If I think it would be a good idea to have those libraries anyway in my core Python system, can I install them back there and they become available whenever I load my fast.ai environment? Or do I have to install twice, in the core system AND the environment?

When loading a particular environment, you can only access the packages installed in that particular environment.

1 Like

Hey guys! I have a question: what’s the purpose of sz?

IMG Size

1 Like


One clarification, here we are using already trained model resnet which was trained on another image dataset and now we are using it to adapt it according to our dog cat dataset: Is this called Transfer Learning or something else

My version of crestle environment only has the old version of the course.