Learn.get_preds() memory inefficiency - quick fix

Just putting just the actual fixes in one place to make code review easier. The commented lines are the ones being replaced.

# new Interpretation.from_learner in fastai/interpret.py
def from_learner(cls, learn, ds_idx=1, dl=None, act=None):
    "Construct interpretation object from a learner"
    if dl is None: dl = learn.dls[ds_idx]
    #return cls(dl, *learn.get_preds(dl=dl, with_input=True, with_loss=True, with_decoded=True, act=None))
    dl = dl.new(shuffle=False, drop_last=False)
    return cls(dl, dl.dataset.items, *learn.get_preds(dl=dl, with_input=False, with_loss=True, with_decoded=True, act=None))

# new Interpretation.plot_top_losses in fastai/interpret.py
def plot_top_losses(self, k, largest=True, **kwargs):
    losses,idx = self.top_losses(k, largest)
    if not isinstance(self.inputs, tuple): self.inputs = (self.inputs,)
    if isinstance(self.inputs[0], Tensor): inps = tuple(o[idx] for o in self.inputs)
    else: inps = (first(to_cpu(self.dl.after_batch(to_device(first(self.dl.create_batches(idx)))))),)
    #else: inps = self.dl.create_batch(self.dl.before_batch([tuple(o[i] for o in self.inputs) for i in idx]))
    b = inps + tuple(o[idx] for o in (self.targs if is_listy(self.targs) else (self.targs,)))
    x,y,its = self.dl._pre_show_batch(b, max_n=k)
    b_out = inps + tuple(o[idx] for o in (self.decoded if is_listy(self.decoded) else (self.decoded,)))
    x1,y1,outs = self.dl._pre_show_batch(b_out, max_n=k)
    if its is not None:
        plot_top_losses(x, y, its, outs.itemgot(slice(len(inps), None)), self.preds[idx], losses,  **kwargs)

# new _get_iw_info in fastai/vision/widgets.py
def _get_iw_info(learn, ds_idx=0):
    dl = learn.dls[ds_idx].new(shuffle=False, drop_last=False)
    #inp,probs,targs,preds,losses = learn.get_preds(dl=dl, with_input=True, with_loss=True, with_decoded=True)
    #inp,targs = L(zip(*dl.decode_batch((inp,targs), max_n=9999)))
    probs,targs,preds,losses = learn.get_preds(dl=dl, with_input=False, with_loss=True, with_decoded=True)
    targs = [dl.vocab[t] for t in targs]
    return L([dl.dataset.items,targs,losses]).zip()