How could I release gpu memory of keras

I was having exactly same issue. I solved by also deleting the training_history variable. Here is my piece of code that doesn’t have memory leakage. Looks like training_history keeps some pointer to GPU memory.

for fold, (train_clusters_index, valid_clusters_index) in enumerate(kf):
	model = create_model(TRAINABLE_VGG, include_top=INCLUDE_TOP)

	train_fold_id = folds.index[folds.isin(clusters[train_clusters_index])]
	valid_fold_id = folds.index[folds.isin(clusters[valid_clusters_index])]

	train_index = np.where(np.in1d(train_id, train_fold_id))[0]
	valid_index = np.where(np.in1d(train_id, valid_fold_id))[0]

	if SAMPLE < 1:
		train_index = subsample(train_index, SAMPLE)
		valid_index = subsample(valid_index, SAMPLE)

	X_train = train_data[train_index]
	Y_train = train_target[train_index]
	X_valid = train_data[valid_index]
	Y_valid = train_target[valid_index]

	base_model = Y_train.mean(axis=0)
	train_baseline = log_loss(Y_train, np.tile(base_model, len(Y_train)).reshape(-1, (len(base_model))))
	valid_baseline = log_loss(Y_valid, np.tile(base_model, len(Y_valid)).reshape(-1, (len(base_model))))

	num_fold += 1
	print('Start KFold number {} from {}'.format(num_fold, num_folds))
	print('Split train:', len(X_train), 'Baseline: %7.5f' % train_baseline)
	print('Split valid:', len(X_valid), 'Baseline: %7.5f' % valid_baseline)

	model_file = join(MODEL_FOLDER, 'nn_fold_%02d.model' % fold)
	callbacks = [
		EarlyStopping(monitor='val_loss', patience=5, verbose=0),
		ModelCheckpoint(model_file, save_best_only=True, save_weights_only=True)
	]
	# fits the model on batches with real-time data augmentation:
	history = model.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_size),
			samples_per_epoch=len(X_train), nb_epoch=nb_epoch,
			verbose=2,
			validation_data=(X_valid, Y_valid),
			callbacks=callbacks)

	all_history.append(history)

	# Load best epoch
	model.load_weights(model_file)

	predictions_valid = model.predict(X_valid, batch_size=batch_size, verbose=2)
	score = log_loss(Y_valid, predictions_valid)
	print('Score log_loss: ', score)
	sum_score += score*len(valid_index)

	# Store valid predictions
	for i in range(len(valid_index)):
		yfull_train[valid_index[i]] = predictions_valid[i]

	print('Start test KFold number {} from {}'.format(num_fold, num_folds))
	test_prediction = model.predict(test_data, batch_size=batch_size, verbose=2)
	yfull_test.append(test_prediction)
	del history
	del model
	gc.collect()

score = sum_score/len(train_data)
print("Log_loss train independent avg: ", score)
1 Like