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[[chapter_intro]]

Your deep learning journey
Hello, and thank you for letting us join you on your deep learning journey, however far along that

you may be! If you are a complete beginner to deep learning and machine learning, then you are

most welcome here. Our only expectation is that you already know how to code, preferably in

Python.

note: If you don't have any experience coding, that's OK too! The first three

chapters have been explicitly written in a way that will allow executives, product

managers, etc to understand the most important things they'll need to know about

deep learning. When you see bits of code in the text, try to look over them to get

an intuitive sense of what they're doing. We'll explain them line by line. The details

of the syntax are not nearly as important as the high level understanding of what's

going on.

If you are already a confident deep learning practitioner, then you will also find a lot here. In this

book we will be showing you how to achieve world-class results, including techniques from the

latest research. As we will show, this doesn't require advanced mathematical training, or years

of study. It just requires a bit of common sense and tenacity.

Deep learning is for everyone
A lot of people assume that you need all kinds of hard-to-find stuff to get great results with

deep learning, but, as you'll see in this book, those people are wrong. Here's a list of a few thing

you absolutely don't need to do world-class deep learning:

asciidoc

[[myths]]

.What you don't need to do deep learning

[options="header"]

|======
| Myth (don't need) | Truth

| Lots of math | Just high school math is sufficient

| Lots of data | We've seen record-breaking results with <50 items 
of data
| Lots of expensive computers | You can get what you need for state 
of the art work for free

|======

Deep learning is a computer technique to extract and transform data – with use cases ranging

from human speech recognition to animal imagery classification – by using multiple layers of

In [1]: #hide

# from utils import *
from fastai.vision.all import *
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neural networks. Each of these layers takes the inputs from previous layers and progressively

refines them. The algorithms involved can train the layers by learning to minimize errors and

improve their own accuracy (we will discuss those in details in the next section).

Deep learning has power, flexibility, and simplicity. That's why we believe it should be applied

across many disciplines. These include the social and physical sciences, the arts, medicine,

finance, scientific research, and much more. To give a personal example, despite having no

background in medicine, Jeremy started Enlitic, a company that uses deep learning algorithms

to diagnose illness and disease. Within months of starting the company, it was announced that

their algorithm could identify malignant tumors more accurately than radiologists.

Here's a list of some of the thousands of tasks where deep learning, or methods heavily using

deep learning, is now the best in the world:

NLP:: answering questions; speech recognition; summarizing documents; classifying

documents; finding names, dates, etc. in documents; searching for articles mentioning a

concept

Computer vision:: satellite and drone imagery interpretation (e.g. for disaster resilience);

face recognition; image captioning; reading traffic signs; locating pedestrians and vehicles

in autonomous vehicles

Medicine:: Finding anomalies in radiology images, including CT, MRI, and x-ray; counting

features in pathology slides; measuring features in ultrasounds; diagnosing diabetic

retinopathy

Biology:: folding proteins; classifying proteins; many genomics tasks, such as tumor-normal

sequencing and classifying clinically actionable genetic mutations; cell classification;

analyzing protein/protein interactions

Image generation:: Colorizing images; increasing image resolution; removing noise from

images; converting images to art in the style of famous artists

Recommendation systems:: web search; product recommendations; home page layout

Playing games:: Better than humans and better than any other computer algorithm at

Chess, Go, most Atari videogames, many real-time strategy games

Robotics:: handling objects that are challenging to locate (e.g. transparent, shiny, lack of

texture) or hard to pick up

Other applications:: financial and logistical forecasting; text to speech; much much more...

What is remarkable is that deep learning has such varied application yet nearly all of deep

learning is based on a single type of model, the neural network.

But neural networks are not in fact completely new. In order to have a wider perspective on the

field, it is worth it to start with a bit of history.

Neural networks: a brief history
In 1943 Warren McCulloch, a neurophysiologist, and Walter Pitts, a logician, teamed up to

develop a mathematical model of an artificial neuron. They declared that:

https://www.nytimes.com/2016/02/29/technology/the-promise-of-artificial-intelligence-unfolds-in-small-steps.html
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: Because of the “all-or-none” character of nervous activity, neural events and the

relations among them can be treated by means of propositional logic. It is found

that the behavior of every net can be described in these terms. (Pitts and

McCulloch; A Logical Calculus of the Ideas Immanent in Nervous Activity)

They realised that a simplified model of a real neuron could be represented using simple

addition and thresholding as shown in <>. Pitts was self-taught, and, by age 12, had received an

offer to study at Cambridge with the great Bertrand Russell. He did not take up this invitation,

and indeed throughout his life did not accept any offers of advanced degrees or positions of

authority. Most of his famous work was done whilst he was homeless. Despite his lack of an

officially recognized position, and increasing social isolation, his work with McCulloch was

influential, and was picked up by a psychologist named Frank Rosenblatt.

Natural and artificial neurons

Rosenblatt further developed the artificial neuron to give it the ability to learn. Even more

importantly, he worked on building the first device that actually used these principles: The Mark

I Perceptron. Rosenblatt wrote about this work: "we are about to witness the birth of such a

machine – a machine capable of perceiving, recognizing and identifying its surroundings

without any human training or control". The perceptron was built, and was able to successfully

recognize simple shapes.

An MIT professor named Marvin Minsky (who was a grade behind Rosenblatt at the same high

school!) along with Seymour Papert wrote a book, called "Perceptrons", about Rosenblatt's

invention. They showed that a single layer of these devices was unable to learn some simple,

critical mathematical functions (such as XOR). In the same book, they also showed that using

multiple layers of the devices would allow these limitations to be addressed. Unfortunately, only

the first of these insights was widely recognized, as a result of which the global academic

community nearly entirely gave up on neural networks for the next two decades.

Perhaps the most pivotal work in neural networks in the last 50 years is the multi-volume Parallel

Distributed Processing (PDP), released in 1986 by MIT Press. Chapter 1 lays out a similar hope

to that shown by Rosenblatt:

: …people are smarter than today's computers because the brain employs a basic

computational architecture that is more suited to deal with a central aspect of the

natural information processing tasks that people are so good at. …we will

introduce a computational framework for modeling cognitive processes that

seems… closer than other frameworks to the style of computation as it might be

done by the brain. (PDP, chapter 1)

The premise that PDP is using here is that traditional computer programs work very differently

to brains, and that might be why computer programs had (at that point) been so bad at doing

things that brains find easy (such as recognizing objects in pictures). The authors claim that the

PDP approach is "closer than other frameworks" to how the brain works, and therefore it might

be better able to handle these kinds of tasks.
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In fact, the approach laid out in PDP is very similar to the approach used in today's neural

networks. The book defined "Parallel Distributed Processing" as requiring:

1. A set of processing units

2. A state of activation

3. An output function for each unit

4. A pattern of connectivity among units

5. A propagation rule for propagating patterns of activities through the network of

connectivities

6. An activation rule for combining the inputs impinging on a unit with the current state of that

unit to produce a new level of activation for the unit

7. A learning rule whereby patterns of connectivity are modified by experience

8. An environment within which the system must operate

We will see in this book that modern neural networks handle each of these requirements.

In the 1980's most models were built with a second layer of neurons, thus avoiding the problem

that had been identified by Minsky (this was their "pattern of connectivity among units", to use

the framework above). And indeed, neural networks were widely used during the 80s and 90s

for real, practical projects. However, again a misunderstanding of the theoretical issues held

back the field. In theory, adding just one extra layer of neurons was enough to allow any

mathematical model to be approximated with these neural networks, but in practice such

networks were often too big and slow to be useful.

Although researchers showed 30 years ago that to get practical good performance you need to

use even more layers of neurons, it is only in the last decade that this has been more widely

appreciated. Neural networks are now finally living up to their potential, thanks to the

understanding to use more layers as well as improved ability to do so thanks to improvements in

computer hardware, increases in data availability, and algorithmic tweaks that allow neural

networks to be trained faster and more easily. We now have what Rosenblatt had promised: "a

machine capable of perceiving, recognizing and identifying its surroundings without any human

training or control".

This is what you will learn how to build them in this book.

What you will learn
To be exact, after reading this book you will know:

How to train models that achieve state of the art results in:

Computer vision: Image classification (e.g. classify pet photos by breed), and image

localization and detection (e.g. find where the animals in an image are)

Natural Language Processing (NLP): Document classification (e.g. movie review

sentiment analysis), and language modelling

Tabular data (e.g. sales prediction) with categorical data, continuous data, and mixed

data, including time series
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Collaborative filtering (e.g. movie recommendation)

How to turn your models into web applications

Why and how deep learning models work, and how to use that knowledge to improve the

accuracy, speed, and reliability of your models

The latest deep learning techniques which really matter in practice

How to read a deep learning research paper

How to implement deep learning algorithms from scratch

How to think about ethical implications of your work, to help ensure that you're making the

world a better place, and that your work isn't misused for harm

See the table of contents for a complete list; but to give you a taste, here's some of the

techniques covered (don't worry if none of these words mean anything to you yet – you'll learn

them all soon): Affine functions and non-linearities; Parameters and activations; Random init and

transfer learning; SGD, Momentum, Adam and more optimizers; Convolutions; Batch

normalization; Dropout; Data augmentation; Weight decay; Resnet and Densenet architectures;

Image classification and regression; Embeddings; Recurrent neural networks (RNNs);

Transformers; Segmentation; U-net; Generative Adversarial Networks (GANs), and much more.

note: If you look at the end of each chapter, you'll find a questionnaire. That's a

great place also to see what we cover in each chapter, since (we hope!) by the end

of each chapter you'll be able to answer all the questions there. In fact, one of our

reviewers (thanks Fred!) said that he likes to read the questionnaire first, before

reading the chapter, so that way he knows what to look for.

Who we are
Since we are going to be spending a lot of time together, let's get to know each other a bit… We

are Sylvain and Jeremy, your guides on this journey. We hope that you will find us well suited for

this position.

Jeremy has been using and teaching machine learning for around 30 years. He started using

neural networks 25 years ago. During this time, he has led many companies and projects which

have machine learning at their core, including founding the first company to focus on deep

learning and medicine, Enlitic, and taking on the role of President and Chief Scientist of the

world's largest machine learning community, Kaggle. He is the co-founder, along with Dr Rachel

Thomas, of fast.ai, the organisation that built the course this book is based on.

From time to time you will hear directly from us, in sidebars like this one from Jeremy:

J: Hi everybody, I'm Jeremy! You might be interested to know that I do not have

any formal technical education. I completed a Bachelor of Arts, with a major in

philosophy, and didn't do very well in my university grades. I was much more

interested in doing real projects, rather than theoretical studies, so I worked full-

time at a management consulting firm called McKinsey and Company throughout

my degree. If you're somebody who would rather get their hands dirty building
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stuff rather than spend years learning abstract concepts, then you will understand

where I am coming from! Look out for sidebars from me to find information most

suited to people with a less mathematical or formal technical background—that is,

people like me…

Sylvain, on the other hand, knows a lot about formal technical education. In fact, he has written

10 maths textbooks, covering the entire advanced French maths curriculum!

S: Unlike Jeremy, I have not spent many years coding and applying machine

learning algorithms. Rather, I recently came to the machine learning world, by

watching Jeremy's fast.ai course videos. So, if you are somebody who has not

opened a terminal and written commands at the command line, then you will

understand where I am coming from! Look out for sidebars from me to find

information most suited to people with a more mathematical or formal technical

background, but less real-world coding—that is, people like me…

The fast.ai course has been studied by hundreds of thousands of students, from all walks of life,

from all parts of the world. Sylvain stood out as the most impressive student of the course that

Jeremy had ever seen, which led to him joining fast.ai, and then becoming the co-author, along

with Jeremy, of the fastai software library.

All this means that you have the best of both worlds: the people who know more about the

software than anybody, because they wrote it, an expert on maths, and an expert on coding and

machine learning, but also people who understand what it feels like to be a relative outsider in

maths, and a relative outsider in coding and machine learning.

Anybody who has watched sports knows that if you have a two-person commentary team then

you also need a third person to do "special comments". Our special commentator is Alexis

Gallagher. Alexis has a very diverse background: he has been a zoology researcher, screenplay

writer, an improv performer, a McKinsey consultant (like Jeremy!), a Swift coder, and a CTO.

A: I've decided it's time for me to learn about this AI stuff! After all, I've tried pretty

much everything else… But I don't really have a background in machine learning,

or in Python. Still… how hard can it be? I'm going to be learning throughout this

book, just like you are. Look out for my sidebars for learning tips that I found

helpful on my journey, and hopefully you will find helpful too.

How to learn deep learning
Harvard professor David Perkins, who wrote Making Learning Whole, has much to say about

teaching. The basic idea is to teach the whole game. That means that's if you're teaching

baseball, you first take people to a baseball game or get them to play it. You don't teach them

how to line thread into a ball, the physics of a parabola, or the coefficient of friction of a ball on

a bat.
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Paul Lockhart, a Columbia math PhD, former Brown professor, and K-12 math teacher, imagines

in the influential essay A Mathematician's Lament a nightmare world where music and art are

taught the way math is taught. Children would not be allowed to listen to or play music until they

have spent over a decade mastering music notation and theory, spending classes transposing

sheet music into a different key. In art class, students study colours and applicators, but aren't

allowed to actually paint until college. Sound absurd? This is how math is taught–we require

students to spend years doing rote memorization, and learning dry, disconnected fundamentals

that we claim will pay off later, long after most of them quit the subject.

Unfortunately, this is where many teaching resources on deep learning begin–asking learners to

follow along with the definition of the Hessian and theorems for the Taylor approximation of your

loss functions, without ever giving examples of actual working code. We're not knocking

calculus. We love calculus and have even taught it at the college level, but we don't think it's the

best place to start when learning deep learning!

In deep learning, it really helps if you have the motivation to fix your model to get it to do better.

That's when you start learning the relevant theory. But you need to have the model in the first

place. We teach almost everything through real examples. As we build out those examples, we

go deeper and deeper, and we'll show you how to make your projects better and better. This

means that you'll be gradually learning all the theoretical foundations you need, in context, in a

way that you'll see why it matters and how it works.

So, here's our commitment to you. Throughout this book, we will follow these principles:

Teaching the whole game – starting off by showing how to use a complete, working, very

usable, state of the art deep learning network to solve real world problems, by using simple,

expressive tools. And then gradually digging deeper and deeper into understanding how

those tools are made, and how the tools that make those tools are made, and so on…

Always teaching through examples: ensuring that there is a context and a purpose that you

can understand intuitively, rather than starting with algebraic symbol manipulation ;

Simplifying as much as possible: we've spent years building tools and teaching methods

that make previously complex topics very simple ;

Removing barriers: deep learning has, until now, been a very exclusive game. We're

breaking it open, and ensuring that everyone can play.

The hardest part of deep learning is artisanal: how do you know if you've got enough data;

whether it is in the right format; if your model is training properly; and if it's not, what should you

do about it? That is why we believe in learning by doing. As with basic data science skills, with

deep learning you only get better through practical experience. Trying to spend too much time

on the theory can be counterproductive. The key is to just code and try to solve problems: the

theory can come later, when you have context and motivation.

There will be times when the journey will feel hard. Times where you feel stuck. Don't give up!

Rewind through the book to find the last bit where you definitely weren't stuck, and then read

slowly through from there to find the first thing that isn't clear. Then try some code experiments

yourself, and Google around for more tutorials on whatever the issue you're stuck with is--often
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you'll find some different angle on the material which might help it to click. Also, it's expected

and normal to not understand everything (especially the code) on first reading. Trying to

understand the material serially before proceeding can sometimes be hard. Sometimes things

click into place after you got more context from parts down the road, from having a bigger

picture. So if you do get stuck on a section, try moving on anyway and make a note to come

back to it later.

Remember, you don't need any particular academic background to succeed at deep learning.

Many important breakthroughs are made in research and industry by folks without a PhD, such

as the paper Unsupervised Representation Learning with Deep Convolutional Generative

Adversarial Networks, one of the most influential papers of the last decade, with over 5000

citations, which was written by Alec Radford when he was an under-graduate. Even at Tesla,

where they're trying to solve the extremely tough challenge of making a self-driving car, CEO

Elon Musk says:

: "A PhD is definitely not required. All that matters is a deep understanding of AI &

ability to implement NNs in a way that is actually useful (latter point is what’s truly

hard). Don’t care if you even graduated high school."

What you will need to succeed however is to apply what you learn in this book to a personal

project and always persevere.

Your projects and your mindset
Whether you're excited to identify if plants are diseased from pictures of their leaves, auto-

generate knitting patterns, diagnose TB from x-rays, or determine when a raccoon is using your

cat door, we will get you using deep learning on your own problems (via pre-trained models

from others) as quickly as possible, and then will progressively drill into more details. You'll learn

how to use deep learning to solve your own problems at state-of-the-art accuracy within the

first 30 minutes of the next chapter! (And feel free to skip straight there now if you're dying to

get coding right away.) There is a pernicious myth out there that you need to have computing

resources and datasets the size of those at Google to be able to do deep learning, and it's not

true.

So, what sort of tasks make for good test cases? You could train your model to distinguish

between Picasso and Monet paintings or to pick out pictures of your daughter instead of

pictures of your son. It helps to focus on your hobbies and passions–setting yourself four of five

little projects rather than striving to solve a big, grand problem tends to work better when you're

getting started. Since it is easy to get stuck, trying to be too ambitious too early can often

backfire. Then, once you've got the basics mastered, aim to complete something you're really

proud of!

J: Deep learning can be set to work on almost any problem. For instance, my first

startup was a company called FastMail, which provided enhanced email services

when it launched in 1999 (and still does to this day). In 2002 I set it up to use a

https://arxiv.org/abs/1511.06434
https://twitter.com/elonmusk/status/1224089444963311616
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primitive form of deep learning – single-layer neural networks – to help categorise

emails and stop customers from receiving spam.

Common character traits in the people that do well at deep learning include playfulness and

curiosity. The late physicist Richard Feynman is an example of someone who we'd expect to be

great at deep learning: his development of an understanding of the movement of subatomic

particles came from his amusement at how plates wobble when they spin in the air.

Let's now focus on what you will learn, starting with the software.

The software: PyTorch, fastai, and Jupyter (and why it
doesn't matter)
We've completed hundreds of machine learning projects using dozens of different packages,

and many different programming languages. At fast.ai, we have written courses using most of

the main deep learning and machine learning packages used today. After PyTorch came out in

2017 we spent over a thousand hours testing it before deciding that we would use it for future

courses, software development, and research. Since that time PyTorch has become the world's

fastest-growing deep learning library and is already used for most research papers at top

conferences. This is generally a leading indicator of usage in industry, because these are the

papers that end up getting used in products and services commercially. We have found that

PyTorch is the most flexible and expressive library for deep learning. It does not trade off speed

for simplicity, but provides both.

PyTorch works best as a low-level foundation library, providing the basic operations for higher

level functionality. The fastai library is the most popular library for adding this higher-level

functionality on top of PyTorch. It's also particularly well suited for the purposes of this book,

because it is unique in providing a deeply layered software architecture (there's even a peer-

reviewed academic paper about this layered API). In this book, as we go deeper and deeper into

the foundations of deep learning, we will also go deeper and deeper into the layers of fastai.

This book covers version 2 of the fastai library, which is a from-scratch rewrite providing many

unique features.

However, it doesn't really matter what software you learn, because it takes only a few days to

learn to switch from one library to another. What really matters is learning the deep learning

foundations and techniques properly. Our focus will be on using code which as clearly as

possible expresses the concepts that you need to learn. Where we are teaching high-level

concepts, we will use high level fastai code. Where we are teaching low-level concepts, we will

use low-level PyTorch, or even pure Python code.

If it feels like new deep learning libraries are appearing at a rapid pace nowadays, then you need

to be prepared for a much faster rate of change in the coming months and years. As more

people enter the field, they will bring more skills and ideas, and try more things. You should

assume that whatever specific libraries and software you learn today will be obsolete in a year

or two. Just think about the number of changes of libraries and technology stacks that occur all

the time in the world of web programming — and yet this is a much more mature and slow-

https://arxiv.org/abs/2002.04688
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growing area than deep learning. We strongly believe that the focus in learning needs to be on

understanding the underlying techniques and how to apply them in practice, and how to quickly

build expertise in new tools and techniques as they are released.

By the end of the book, you'll understand nearly all the code that's inside fastai (and much of

PyTorch too), because each chapter we'll be digging a level deeper to understand exactly

what's going on as we build and train our models. This means that you'll have learnt the most

important best practices used in modern deep learning—not just how to use them, but how they

really work and are implemented. If you want to use those approaches in another framework,

you'll have the knowledge you need to develop it if needed.

Since the most important thing for learning deep learning is writing code and experimenting, it's

important that you have a great platform for experimenting with code. The most popular

programming experimentation platform is called Jupyter. This is what we will be using

throughout this book. We will show you how you can use Jupyter to train and experiment with

models and introspect every stage of the data pre-processing and model development pipeline.

Jupyter is the most popular tool for doing data science in Python, for good reason. It is

powerful, flexible, and easy to use. We think you will love it!

Let's see it in practice and train our first model.

Your first model
As we said before, we will teach how to do things before we explain why they work. Following

this top-down approach, we will begin by actually training an image classifier to recognize dogs

and cats with almost 100% accuracy. To train this model and run our experiments, you will need

some initial setup. Don't worry, it's not as hard as it looks like.

s: Do not skip the setup part even if it looks intimidating at first, especially if you

have little or no experience using things like a terminal or the command line. Most

of that is actually not necessary and you will find that the easiest servers can be

setup with just your usual web browser. It is crucial that you run your own

experiments in parallel with this book in order to learn.

Getting a GPU deep learning server
To do nearly everything in this book, you'll need access to a computer with an NVIDIA GPU

(unfortunately other brands of GPU are not fully supported by the main deep learning libraries).

However, we don't recommend you buy one; in fact, even if you already have one, we don't

suggest you use it just yet! Setting up a computer takes time and energy, and you want all your

energy to focus on deep learning right now. Therefore, we instead suggest you rent access to a

computer that already has everything you need preinstalled and ready to go. Costs can be as

little as US$0.25 per hour while you're using it, and some options are even free.

jargon: (Graphic Processing Unit) GPU: Also known as a graphics card. A special

kind of processor in your computer than can handle thousands of single tasks at
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the same time, especially designed for displaying 3D environments on a computer

for playing games. These same basic tasks are very similar to what neural

networks do, such that GPUs can run neural networks hundreds of times faster

than regular CPUs. All modern computers contain a GPU, but few contain the right

kind of GPU necessary for deep learning.

The best choice for GPU servers for use with this book change over time, as companies come

and go, and prices change. We keep a list of our recommended options on the book website.

So, go there now, and follow the instructions to get connected to a GPU deep learning server.

Don't worry, it only takes about two minutes to get set up on most platforms, and many don't

even require any payment, or even a credit card to get started.

A: My two cents: heed this advice! If you like computers you will be tempted to

setup your own box. Beware! It is feasible but surprisingly involved and

distracting. There is a good reason this book is not titled, Everything you ever

wanted to know about Ubuntu system administration, NVIDIA driver installation,

apt-get, conda, pip, and Jupyter notebook configuration. That would be a book of

its own. Having designed and deployed our production machine learning

infrastructure at work, I can testify it has its satisfactions but it is as unrelated to

modelling as maintaining an airplane is to flying one.

Each option shown on the book website includes a tutorial; after completing the tutorial, you will

end up with a screen looking like <>.

Initial view of Jupyter Notebooks

You are now ready to run your first Jupyter notebook!

jargon: Jupyter Notebook: A piece of software that allows you to include formatted

text, code, images, videos, and much more, all within a single interactive

document. Jupyter received the highest honor for software, the ACM Software

System Award, thanks to its wide use and enormous impact in many academic

fields, and in industry. Jupyter Notebook is the most widely used software by data

scientists for developing and interacting with deep learning models.

Running your first notebook
The notebooks are labelled by chapter, and then by notebook number, so that they are in the

same order as they are presented in this book. So, the very first notebook you will see listed, is

the notebook that we need to use now. You will be using this notebook to train a model that can

recognize dog and cat photos. To do this, we'll be downloading a dataset of dog and cat photos,

and using that to train a model. A dataset simply refers to a bunch of data—it could be images,

emails, financial indicators, sounds, or anything else. There are many datasets made freely

available that are suitable for training models. Many of these datasets are created by academics

to help advance research, many are made available for competitions (there are competitions

https://book.fast.ai/
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where data scientists can compete to see who has the most accurate model!), and some are by-

products of other processes (such as financial filings).

note: There are two folders containing different versions of the notebooks. The

full folder contains the exact notebooks used to create the book you're reading

now, with all the prose and outputs. The stripped version has the same headings

and code cells, but all outputs and prose have been removed. After reading a

section of the book, we recommend working through the stripped notebooks, with

the book closed, and see if you can figure out what each cell will show before you

execute it. And try to recall what the code is demonstrating.

To open a notebook, just click on it. The notebook will open, and it will look something like <>

(note that there may be slight differences in details across different platforms; you can ignore

those differences):

An example of notebook

A notebook consists of cells. There are two main types of cell:

Cells containing formatted text, images, and so forth. These use a format called markdown,

which we will learn about soon

Cells containing code, which can be executed, and outputs will appear immediately

underneath (which could be plain text, tables, images, animations, sounds, or even

interactive applications)

Jupyter notebooks can be in one of two modes, edit mode, or command mode. In edit mode

typing the keys on your keyboard types the letters into the cell in the usual way. However, in

command mode, you will not see any flashing cursor, and the keys on your keyboard will each

have a special function.

Let's make sure that you are in command mode before continuing: press "escape" now on your

keyboard to switch to command mode (if you are already in command mode, then this does

nothing, so press it now just in case). To see a complete list of all of the functions available,

press "h"; press "escape" to remove this help screen. Notice that in command mode, unlike

most programs, commands do not require you to hold down "control", "alt", or similar — you

simply press the required letter key.

You can make a copy of a cell by pressing "c" (it needs to be selected first, indicated with an

outline around the cell; if it is not already selected, click on it once). Then press "v" to paste a

copy of it.

When you click on a cell it will be selected. Click on the cell now which begins with the line "#

CLICK ME". The first character in that line represents a comment in Python, so is ignored when

executing the cell. The rest of the cell is, believe it or not, a complete system for creating and

training a state-of-the-art model for recognizing cats versus dogs. So, let's train it now! To do

so, just press shift-enter on your keyboard, or press the "play" button on the toolbar. Then, wait

a few minutes while the following things happen:
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1. A dataset containing called the Oxford-IIT Pet Dataset that contains 7,349 images of cats

and dogs from 37 different breeds will be downloaded from the fast.ai datasets collection to

the GPU server you are using, and will then be extracted

2. A pretrained model will be downloaded from the Internet, which has already been trained on

1.3 million images, using a competition winning model

3. The pretrained model will be fine-tuned using the latest advances in transfer learning, to

create a model that is specially customised for recognising dogs and cats

The first two steps only need to be run once on your GPU server. If you run the cell again, it will

use the dataset and model that have already been downloaded, rather than downloading them

again.

100.00% [811712512/811706944 00:18<00:00]

epoch train_loss valid_loss error_rate time

0 0.179891 0.031254 0.006089 00:11

epoch train_loss valid_loss error_rate time

0 0.058267 0.024366 0.007442 00:12

You will probably not see exactly the same results that are in the book. There are a lot of

sources of small random variation involved in training models. We generally see an error rate of

well less than 0.02 in this example.

important: Depending on your network speed, it might take a few minutes to

download the pretrained model and dataset. Running fine_tune  might take a

minute or so. Often models in this book take a few minutes to train, as will your

own models. So it's a good idea to come up with good techniques to make the

most of this time. For instance, keep reading the next section while your model

trains, or open up another notebook and use it for some coding experiments.

Sidebar: This book was written in Jupyter Notebooks
We wrote this book using Jupyter Notebooks, so for nearly every chart, table, and calculation in

this book, we'll be showing you all the exact code required to replicate it yourself. That's why

In [2]: #id first_training

#caption Results from the first training

# CLICK ME

from fastai.vision.all import *

path = untar_data(URLs.PETS)/'images'



def is_cat(x): return x[0].isupper()

dls = ImageDataLoaders.from_name_func(

    path, get_image_files(path), valid_pct=0.2, seed=42,

    label_func=is_cat, item_tfms=Resize(224))



learn = cnn_learner(dls, resnet34, metrics=error_rate)

learn.fine_tune(1)


http://www.robots.ox.ac.uk/~vgg/data/pets/
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very often in this book, you will see some code immediately followed by a table, a picture or just

some text. If you go on the book website you will find all the code and you can try running and

modifying every example yourself.

You just saw how a cell that outputs a table looks inside the book. Here is an example of a cell

that outputs text:

2

Jupyter will always print or show the result of the last line (if there is one). For instance, here is

an example of a cell that outputs an image:

End sidebar
So, how do we know if this model is any good? In the last column of the table you can see the

error rate, which is the proportion of images that were incorrectly identified. The error rate

serves as our metric -- our measure of model quality, chosen to be intuitive and

comprehensible. As you can see, the model is nearly perfect, even though the training time was

only a few seconds (not including the one-time downloading of the dataset and the pretrained

model). In fact, the accuracy you've achieved already is far better than anybody had ever

achieved just 10 years ago!

Finally, let's check that this model actually works. Go and get a photo of a dog, or a cat; if you

don't have one handy, just search Google images and download an image that you find there.

Now execute the cell with uploader  defined. It will output a button you can click, so you can

select the image you want to classify.

---------------------------------------------------------------------------

NameError                                 Traceback (most recent call last)


In [3]: 1+1


Out[3]:

In [4]: img = PILImage.create('images/chapter1_cat_example.jpg')
img.to_thumb(192)


Out[4]:

In [5]: #hide_output

uploader = widgets.FileUpload()

uploader


https://book.fast.ai/
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/tmp/ipykernel_26284/4087761153.py in <module>

      1 #hide_output
----> 2 uploader = widgets.FileUpload()

      3 uploader


NameError: name 'widgets' is not defined

An upload button

Now we can pass the uploaded file to the model. The notebook will tell you whether it thinks it is

a dog, or a cat, and how confident it is. Make sure that it is a clear photo of a single dog or a cat,

and not a line drawing, cartoon, or similar. Hopefully, you'll find that your model did a great job!

Is this a cat?: True.

Probability it's a cat: 0.980897


Congratulations on your first classifier!

But what does this mean? But what did we actually do? In order to explain this, let's zoom out

again to take in the big picture.

What is machine learning?
Your classifier is a deep learning model. As was already mentioned, deep learning models use

neural networks, which originally date from the 1950s and have become powerful very recently

thanks to recent advancements.

Another key piece of context is that deep learning is just a modern area in the more general

discipline of machine learning. To understand the essence of what you did when you trained

your own classification model, you don't need to understand deep learning. It is enough to see

how your model and your training process are examples of the concepts that apply to machine

learning in general.

So in this section, we will describe what machine learning is. We will introduce the key concepts,

and see how they can be traced back to the original essay that introduced the concept.

Machine learning is, like regular programming, a way to get computers to complete a specific

task. But how would you use regular programming to do what we just did in the last section:

recognize dogs vs cats in photos? We would have to write down for the computer the exact

steps necessary to complete the task.

In [6]: #hide

# For the book, we can't actually click an upload button, so we fake it

uploader = SimpleNamespace(data = ['images/chapter1_cat_example.jpg'])


In [7]: img = PILImage.create(uploader.data[0])

is_cat,_,probs = learn.predict(img)

print(f"Is this a cat?: {is_cat}.")

print(f"Probability it's a cat: {probs[1].item():.6f}")
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Normally, it's easy enough for us to write down the steps to complete a task when we're writing

a program. We just think about the steps we'd take if we had to do the task by hand, and then

we translate them into code. For instance, we can write a function that sorts a list. In general, we

write a function that looks something like <> (where inputs might be an unsorted list, and results

a sorted list).

---------------------------------------------------------------------------

NameError                                 Traceback (most recent call last)

/tmp/ipykernel_26284/31908215.py in <module>

      3 #id basic_program
      4 #alt Pipeline inputs, program, results

----> 5 gv('''program[shape=box3d width=1 height=0.7]

      6 inputs->program->results''')


NameError: name 'gv' is not defined

But for recognizing objects in a photo that's a bit tricky; what are the steps we take exactly

when we recognize an object in a picture? We really don't know, since it all happens in our brain

without us being consciously aware of it!

Right back at the dawn of computing, in 1949, an IBM researcher named Arthur Samuel started

working on a different way to get computers to complete tasks, which he called machine

learning. In his classic 1962 essay Artificial Intelligence: A Frontier of Automation, he wrote:

: Programming a computer for such computations is, at best, a difficult task, not

primarily because of any inherent complexity in the computer itself but, rather,

because of the need to spell out every minute step of the process in the most

exasperating detail. Computers, as any programmer will tell you, are giant morons,

not giant brains.

His basic idea was this: instead of telling the computer the exact steps required to solve a

problem, instead, show it examples of the problem to solve, and let it figure out how to solve it

itself. This turned out to be very effective: by 1961 his checkers playing program had learned so

much that it beat the Connecticut state champion! Here's how he described his idea (from the

same essay as above):

: Suppose we arrange for some automatic means of testing the effectiveness of

any current weight assignment in terms of actual performance and provide a

mechanism for altering the weight assignment so as to maximize the

performance. We need not go into the details of such a procedure to see that it

could be made entirely automatic and to see that a machine so programmed

would "learn" from its experience.

In [8]: #hide_input
#caption A traditional program

#id basic_program

#alt Pipeline inputs, program, results

gv('''program[shape=box3d width=1 height=0.7]

inputs->program->results''')
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There a number of powerful concepts embedded in this short statement:

the idea of a "weight assignment"

the fact that every weight assignment has some "actual performance"

the requirement that there is an "automatic means" of testing that performance,

and last, that there is a "mechanism" (i.e., another automatic process) for improving the

performance by changing the weight assignments.

Let us take these concepts one by one, in order to understand how they fit together in practice.

First, we need to understand what Samuel means by a weight assignment.

Weights are just variables, and a weight assignment is a particular choice of values for those

variables. The program's inputs are values that it processes in order to produce its results -- for

instance, taking image pixels as inputs, and returning the classification "dog" as a result. But the

program's weight assignments are other values which define how the program will operate.

Since they will affect the program they are in a sense another kind of input, so we will update

our basic picture of <> and replace it with <> in order to take this into account:

---------------------------------------------------------------------------

NameError                                 Traceback (most recent call last)

/tmp/ipykernel_26284/310237658.py in <module>

      2 #caption A program using weight assignment

      3 #id weight_assignment

----> 4 gv('''model[shape=box3d width=1 height=0.7]

      5 inputs->model->results; weights->model''')


NameError: name 'gv' is not defined

We've changed the name of our box from program to model. This is to follow modern

terminology and to reflect that the model is a special kind of program: it's one that can do many

different things, depending on the weights. It can be implemented in many different ways. For

instance, in Samuel's checkers program, different values of the weights would result in different

checkers-playing strategies.

(By the way, what Samuel called weights are most generally refered to as model parameters

these days, in case you have encountered that term. The term weights is reserved for a

particular type of model parameter.)

Next, he said we need an automatic means of testing the effectiveness of any current weight

assignment in terms of actual performance. In the case of his checkers program, the "actual

performance" of a model would be how well it plays. And you could automatically test the

performance of two models by setting them to play against each other, and see which one

usually wins.

In [9]: #hide_input
#caption A program using weight assignment

#id weight_assignment
gv('''model[shape=box3d width=1 height=0.7]

inputs->model->results; weights->model''')
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Finally, he says we need a mechanism for altering the weight assignment so as to maximize the

performance. For instance, we could look at the difference in weights between the winning

model and the losing model, and adjust the weights a little further in the winning direction.

We can now see why he said that such a procedure could be made entirely automatic and... a

machine so programed would "learn" from its experience. Learning would become entirely

automatic when the adjustment of the weights was also automatic -- when instead of us

improving a model by adjusting its weights manually, we relied on an automated mechanism that

produced adjustments based on performance.

<> shows the full picture of Samuel's idea of training a machine learning model.

---------------------------------------------------------------------------

NameError                                 Traceback (most recent call last)

/tmp/ipykernel_26284/23477011.py in <module>

      3 #id training_loop
      4 #alt The basic training loop

----> 5 gv('''ordering=in

      6 model[shape=box3d width=1 height=0.7]

      7 inputs->model->results; weights->model; results->performance


NameError: name 'gv' is not defined

Notice the distinction between the model's results (e.g., the moves in a checkers game) and its

performance (e.g., whether it wins the game, or how quickly it wins).

Also note that once the model is trained -- that is, once we've chosen our final, best, favorite

weight assignment -- then we can think of the weights as being part of the model, since we're

not varying them any more.

Therefore actually using a model after it's trained looks like <>.

---------------------------------------------------------------------------

NameError                                 Traceback (most recent call last)

/tmp/ipykernel_26284/1322908288.py in <module>

      2 #caption Using a trained model as a program

      3 #id using_model

----> 4 gv('''model[shape=box3d width=1 height=0.7]


In [10]: #hide_input
#caption Training a machine learning model

#id training_loop

#alt The basic training loop

gv('''ordering=in

model[shape=box3d width=1 height=0.7]

inputs->model->results; weights->model; results->performance

performance->weights[constraint=false label=update]''')


In [11]: #hide_input
#caption Using a trained model as a program

#id using_model

gv('''model[shape=box3d width=1 height=0.7]

inputs->model->results''')
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      5 inputs->model->results''')


NameError: name 'gv' is not defined

This looks identical to our original diagram in <>, just with the word program replaced with

model. This is an important insight: a trained model can be treated just like a regular

computer program.

jargon: Machine Learning: The training of programs developed by allowing a

computer to learn from its experience, rather than through manually coding the

individual steps.

What is a neural network?
It's not too hard to imagine what the model might look like for a checkers program. There might

be a range of checkers strategies encoded, and some kind of search mechanism, and then the

weights could vary how strategies are selected, what parts of the board are focused on during a

search, and so forth. But it's not at all obvious what the model might look like for an image

recognition program, or for understanding text, or for many other interesting problems we might

imagine.

What we would like is some kind of function that is so flexible that it could be used to solve any

given problem, just by varying its weights. Amazingly enough, this function actually exists! It's

the neural network, which we already discussed. That is, if you regard a neural network as a

mathematical function, it turns out to be a function which is extremely flexible depending on its

weights. A mathematical proof called the universal approximation theorem shows that this

function can solve any problem to any level of accuracy, in theory. The fact that neural networks

are so flexible means that, in practice, they are often a suitable kind of model, and you can

focus your effort on the process of training them, that is, of finding good weight assignments.

But what about that process? One could imagine that you might need to find a new

"mechanism" for automatically updating weight for every problem. This would be laborious.

What we'd like here as well is a completely general way to update the weights of a neural

network, to make it improve at any given task. Conveniently, this also exists!

This is called stochastic gradient descent (SGD). We'll see how neural networks and SGD work

in detail in <>, as well as explaining the universal approximation theorem. For now, however, we

will instead use Samuel's own words: We need not go into the details of such a procedure to see

that it could be made entirely automatic and to see that a machine so programed would "learn"

from its experience.

J: Don't worry, neither SGD nor neural nets are mathematically complex. Both SGD

and neural nets nearly entirely rely on addition and multiplication to do their work

(but they do a lot of addition and multiplication!) The main reaction we hear from

students when they see the details is: "is that all it is?"

In other words, to recap, a neural network is a particular kind of machine learning model, which
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fits right in to Samuel's original conception. Neural networks are special because they are highly

flexible, which means they can solve an unusually range of problems just by finding the right

weights. This is powerful, because stochastic gradient descent provides us a way to find those

weight values automatically.

Having zoomed out, let's now zoom back in and revisit our image classification problem into

Samuel's framework.

Our inputs, those are the images. Our weights, those are the weights in the neural net. Our

model is a neural net. Our results -- those are the values that are calculated by the neural net,

like "dog" or "cat".

What about the next piece, an automatic means of testing the effectiveness of any current

weight assignment in terms of actual performance? Determining "actual performance" is easy

enough: we can simply define our model's performance as its accuracy at predicting the correct

answers.

Putting this all together, and assuming that SGD is our mechanism for updating the weight

assignments, we can see how our image classifier is a machine learning model, much like

Samuel envisioned.

A bit of deep learning jargon

Samuel was working in the 1960s but terminology has changed. Here is the modern deep

learning terminology for all the pieces we have discussed:

The functional form of the model is called its architecture (but be careful--sometimes

people use model as a synonym of architecture, so this can get confusing) ;

The weights are called parameters ;

The predictions are calculated from the independent variables, which is the data not

including the labels ;

The results of the model are called predictions ;

The measure of performance is called the loss;

The loss depends not only on the predictions, but also the correct labels (also known as

targets or dependent variable), e.g. "dog" or "cat".

After making these changes, our diagram in <> looks like <>.

---------------------------------------------------------------------------

NameError                                 Traceback (most recent call last)

/tmp/ipykernel_26284/4277915082.py in <module>

      2 #caption Detailed training loop


In [12]: #hide_input
#caption Detailed training loop

#id detailed_loop

gv('''ordering=in

model[shape=box3d width=1 height=0.7 label=architecture]

inputs->model->predictions; parameters->model; labels->loss; predictions->loss

loss->parameters[constraint=false label=update]''')
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      3 #id detailed_loop
----> 4 gv('''ordering=in

      5 model[shape=box3d width=1 height=0.7 label=architecture]

      6 inputs->model->predictions; parameters->model; labels->loss; predictions
->loss


NameError: name 'gv' is not defined

Limitations inherent to machine learning

From this picture we can now see some fundamental things about training a deep learning

model:

A model cannot be created without data ;

A model can only learn to operate on the patterns seen in the input data used to train it ;

This learning approach only creates predictions, not recommended actions ;

It's not enough to just have examples of input data; we need labels for that data too (e.g.

pictures of dogs and cats aren't enough to train a model; we need a label for each one,

saying which ones are dogs, and which are cats).

Generally speaking, we've seen that most organizations that think they don't have enough data,

actually mean they don't have enough labeled data. If any organization is interested in doing

something in practice with a model, then presumably they have some inputs they plan to run

their model against. And presumably they've been doing that some other way for a while (e.g.

manually, or with some heuristic program), so they have data from those processes! For

instance, a radiology practice will almost certainly have an archive of medical scans (since they

need to be able to check how their patients are progressing over time), but those scans may not

have structured labels containing a list of diagnoses or interventions (since radiologists

generally create free text natural language reports, not structured data). We'll be discussing

labeling approaches a lot in this book, since it's such an important issue in practice.

Since these kinds of machine learning models can only make predictions (i.e. attempt to

replicate labels), this can result in a significant gap between organizational goals and model

capabilities. For instance, in this book you'll learn how to create a recommendation system that

can predict what products a user might purchase. This is often used in e-commerce, such as to

customize products shown on a home page, by showing the highest-ranked items. But such a

model is generally created by looking at a user and their buying history (inputs) and what they

went on to buy or look at (labels), which means that the model is likely to tell you about

products they already have, or already know about, rather than new products that they are most

likely to be interested in hearing about. That's very different to what, say, an expert at your local

bookseller might do, where they ask questions to figure out your taste, and then tell you about

authors or series that you've never heard of before.

Another critical insight comes from considering how a model interacts with its environment. For

instance, this can create feedback loops, such as:

A predictive policing model is created based on where arrests have been made in the past.

In practice, this is not actually predicting crime, but rather predicting arrests, and is
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therefore partially simply reflecting biases in existing policing processes;

Law enforcement officers then might use that model to decide where to focus their police

activity, resulting in increased arrests in those areas;

These additional arrests would then feed back to re-training future versions of the model;

This is a positive feedback loop, where the more the model is used, the more biased the

data becomes, making the model even more biased, and so forth.

This can also create problems in commercial products. For instance, a video recommendation

system might be biased towards recommending content consumed by the biggest watchers of

video (for instance, conspiracy theorists and extremists tend to watch more online video

content than average), resulting in those users increasing their video consumption, resulting in

more of those kinds of videos being recommended...

Now that we have seen the base of the theory, let's go back to our code example and see in

detail how the code corresponds to the process we just described.

How our image recognizer works
Let's see just how our image recognizer code maps to these ideas. We'll put each line into a

separate cell, and look at what each one is doing (we won't explain every detail of every

parameter yet, but will give a description of the important bits; full details will come later in the

book).

from fastai2.vision.all import *

The first line imports all of the fastai.vision library. This gives us all of the functions and classes

we will need to create a wide variety of computer vision models.

J: A lot of Python coders recommend avoiding importing a whole library like this

(using the import *  syntax), because in large software projects it can cause

problems. However, for interactive work such as in a Jupyter notebook, it works

great. The fastai library is specially designed to support this kind of interactive

use, and it will only import the necessary pieces into your environment.

path = untar_data(URLs.PETS)/'images'


The second line downloads a standard dataset from the fast.ai datasets collection (if not

previously downloaded) to your server, extracts it (if not previously extracted), and returns a 

Path  object with the extracted location.

S: Throughout my time studying fast.ai, and even still today, I've learned a lot

about productive coding practices. The fastai library and fast.ai notebooks are full

of great little tips that have helped make me a better programmer. For instance,

notice that the fastai library doesn't just return a string containing the path to the

dataset, but a Path object. This is a really useful class from the Python 3 standard

library that makes accessing files and directories much easier. If you haven't come

across it before, be sure to check out its documentation or a tutorial and try it out.

Note that the book.fast.ai website contains links to recommended tutorials for

https://course.fast.ai/datasets
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each chapter. I'll keep letting you know about little coding tips I've found useful as

we come across them.

def is_cat(x): return x[0].isupper()

dls = ImageDataLoaders.from_name_func(

    path, get_image_files(path), valid_pct=0.2, seed=42,

    label_func=is_cat, item_tfms=Resize(224))


The fourth line tells fastai what kind of dataset we have, and how it is structured. There are

various different classes for different kinds of deep learning dataset and problem--here we're

using ImageDataLoaders . The first part of the class name will generally be the type of data

you have, such as image, or text. The second part will generally be the type of problem you are

solving, such as classification, or regression.

The other important piece of information that we have to tell fastai is how to get the labels from

the dataset. Computer vision datasets are normally structured in such a way that the label for an

image is part of the file name, or path, most commonly the parent folder name. Fastai comes

with a number of standardized labelling methods, and ways to write your own. Here we define a

function on the third line: is_cat  which labels cats based on a filename rule provided by the

dataset creators.

Finally, we define the Transform s that we need. A Transform  contains code that is applied

automatically during training; fastai includes many pre-defined Transform s, and adding new

ones is as simple as creating a Python function. There are two kinds: item_tfms  are applied

to each item (in this case, each item is resized to a 224 pixel square); batch_tfms  are applied

to a batch of items at a time using the GPU, so they're particularly fast (we'll see many examples

of these throughout this book).

Why 224 pixels? This is the standard size for historical reasons (old pretrained models require

this size exactly), but you can pass pretty much anything. If you increase the size, you'll often

get a model with better results (since it will be able to focus on more details) but at the price of

speed and memory consumption; or vice versa if you decrease the size.

Note: classification and regression have very specific meanings in machine

learning. These are the two main types of model that we will be investigating in

this book. A classification model is one which attempts to predict a class, or

category. That is, predicting from a number of discrete possibilities, such as "dog"

or "cat". A regression model is one which attempts to predict one or more numeric

quantities, such as temperature, or a location. Sometimes people use the word

regression as a shortcut to a particular kind of model called a linear regression

model; this is a bad practice, and we won't be using that terminology in this book!

The pets dataset contains 7390 pictures of dogs and cats, consisting of 37 different breeds.

Each image is labeled using its filename, for instance the file great_pyrenees_173.jpg  is

the 173rd example of an image of a great pyrenees breed dog in the dataset. The filenames start

with an uppercase letter if the image is a cat, and a lowercase letter otherwise. We have to tell
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fastai how to get labels from the filenames, which we do by calling from_name_func  (which

means that filenames can be extracted using a function applied to the file name), and passing 

x[0].isupper() , which evaluates to True  if the first letter is uppercase (i.e. it's a cat).

The most important parameter to mention here is valid_pct=0.2 . This tells fastai to hold out

20% of the data and not use it for training the model at all. This 20% of the data is called the

validation set; the remaining 80% is called the training set. The validation set is used to measure

the accuracy of the model. By default, the 20% that is held out is selected randomly. The

parameter seed=42  sets the random seed to the same value every time we run this code,

which means we get the same validation set every time we run this code--that way, if you

change your model and re-train it, you know that changes are due to your model, not due to

having a different random validation set.

fastai will always show you your model's accuracy using only the validation set, never the

training set. This is absolutely critical, because if you train a large enough model for a long

enough time, it will eventually learn to memorize the label of every item in your dataset! This is

not actually a useful model, because what we care about is how well our model works on

previously unseen images. That is always our goal when creating a model: to be useful on data

that the model only sees in the future, after it has been trained.

Even when your model has not fully memorized all your data, earlier on in training it may have

memorized certain parts of it. As a result, the longer you train for, the better your accuracy will

get on the training set; and the validation set accuracy will also improve for a while, but

eventually it will start getting worse, as the model starts to memorize the training set, rather

than finding generalizable underlying patterns in the data. When this happens, we say that the

model is over-fitting.

<> shows what happens when you overfit, using a simplified example where we have just one

parameter, and some randomly generated data based on the function x**2 ; as you see,

although the predictions in the overfit model are accurate for data near the observed data, they

are way off when outside of that range.

Example of overfitting

Overfitting is the single most important and challenging issue when training for all machine

learning practitioners, and all algorithms. As we will see, it is very easy to create a model that

does a great job at making predictions on the exact data which it has been trained on, but it is

much harder to make predictions on data that it has never seen before. And of course, this is

the data that will actually matter in practice. For instance, if you create a hand-written digit

classifier (as we will very soon!) and use it to recognise numbers written on cheques, then you

are never going to see any of the numbers that the model was trained on -- every cheque will

have slightly different variations of writing to deal with. We will learn many methods to avoid

overfitting in this book. However, you should only use those methods after you have confirmed

that overfitting is actually occurring (i.e. you have actually observed the validation accuracy

getting worse during training). We often see practitioners using over-fitting avoidance
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techniques even when they have enough data that they didn't need to do so, ending up with a

model that could be less accurate than what they could have achieved.

important: When you train a model, you must always have both a training set, and

a validation set, and must measure the accuracy of your model only on the

validation set. If you train for too long, with not enough data, you will see the

accuracy of your model start to get worse; this is called over-fitting. fastai

defaults valid_pct  to 0.2 , so even if you forget, fastai will create a validation

set for you!

learn = cnn_learner(dls, resnet34, metrics=error_rate)


The fifth line tells fastai to create a convolutional neural network (CNN), and selects what

architecture to use (i.e. what kind of model to create), what data we want to train it on, and what

metric to use.

Why a CNN? A CNN is the current state of the art approach to creating computer vision models.

We'll be learning all about how they work in this book. Their structure is inspired by how the

human vision system works.

There are many different architectures in fastai, which we will be learning about in this book, as

well as discussing how to create your own. Most of the time, however, picking an architecture

isn't a very important part of the deep learning process. It's something that academics love to

talk about, but in practice it is unlikely to be something you need to spend much time on. There

are some standard architectures that work most of the time, and in this case we're using one

called ResNet that we'll be learning a lot about during the book; it is both fast and accurate for

many datasets and problems. The "34" in resnet34  refers to the number of layers in this

variant of the architecture (other options are "18", "50", "101", and "152"). Models using

architectures with more layers take longer to train, and are more prone to overfitting (i.e. you

can't train them for as many epochs before the accuracy on the validation set starts getting

worse). On the other hand, when using more data, they can be quite a bit more accurate.

What is a metric? A metric is a function that measures quality of the model's predictions using

the validation set, and will be printed at the end of each epoch. In this case, we're using 

error_rate , which is a function provided by fastai which does just what it says: tells you

what percentage of images in the validation set are being classified incorrectly. Another

common metric for classification is accuracy  (which is just 1.0 - error_rate ). fastai

provides many more, which will be discussed throughout this book.

The concept of a metric may remind you of loss, but there is an important distinction. The entire

purpose of loss was to define a "measure of performance" that the training system could use to

update weights automatically. In other words, a good choice for loss is a choice that is easy for

stochastic gradient descent to use. But a metric is defined for human consumption. So a good

metric is one that is easy for you to understand, and that hews as closely as possible to what

you want the model to do. At times, you might decide that the loss function is a suitable metric,

but that is not necessarily the case.
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cnn_learner  also has a parameter pretrained , which defaults to True  (so it's used in

this case), which sets the weights in your model to values that have already been trained by

experts to recognize a thousand different categories across 1.3 million photos (using the famous

ImageNet dataset). A model that has weights that have already been trained on some other

dataset is called a pretrained model. You should nearly always use a pretrained model, because

it means that your model, before you've even shown it any of your data, is already very capable.

And, as you'll see, in a deep learning model many of these capabilities are things you'll need,

almost regardless of the details of your project. For instance, parts of pretrained models will

handle edge-, gradient-, and color-detection, which are needed for many tasks.

When using a pretrained model, cnn_learner  will remove the last layer, since that is always

specifically customized to the original training task (i.e. ImageNet dataset classification), and

replace it with one or more new layers with randomized weights, of an appropriate size for the

dataset you are working with. This last part of the model is known as the head .

Using pretrained models is the most important method we have to allow us to train more

accurate models, more quickly, with less data, and less time and money. You might think that

would mean that using pretrained models would be the most studied area in academic deep

learning... but you'd be very, very wrong! The importance of pretrained models is generally not

recognized or discussed in most courses, books, or software library features, and is rarely

considered in academic papers. As we write this at the start of 2020, things are just starting to

change, but it's likely to take a while. So be careful: most people you speak to will probably

greatly underestimate what you can do in deep learning with few resources, because they

probably won't deeply understand how to use pretrained models.

Using a pretrained model for a task different to what it was originally trained for is known as

transfer learning. Unfortunately, because transfer learning is so under-studied, few domains

have pretrained models available. For instance, there are currently few pretrained models

available in medicine, making transfer learning challenging to use in that domain. In addition, it is

not yet well understood how to use transfer learning for tasks such as time series analysis.

jargon: Transfer learning: Using a pretrained model for a task different to what it

was originally trained for.

learn.fine_tune(1)


The sixth line tells fastai how to fit the model. As we've discussed, the architecture only

describes a template for a mathematical function; but it doesn't actually do anything until we

provide values for the millions of parameters it contains.

This is the key to deep learning — how to fit the parameters of a model to get it to solve your

problem. In order to fit a model, we have to provide at least one piece of information: how many

times to look at each image (known as number of epochs). The number of epochs you select

will largely depend on how much time you have available, and how long you find it takes in

practice to fit your model. If you select a number that is too small, you can always train for more

epochs later.
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But why is the method called fine_tune , and not fit ? fastai actually does have a method

called fit , which does indeed fit a model (i.e. look at images in the training set multiple times,

each time updating the parameters to make the predictions closer and closer to the target

labels). But in this case, we've started with a pretrained model, and we don't want to throw away

all those capabilities that it already has. As we'll learn in this book, there are some important

tricks to adapt a pretrained model for a new dataset -- a process called fine-tuning.

jargon: Fine tuning: A transfer learning technique where the weights of a

pretrained model are updated by training for additional epochs using a different

task to that used for pretraining.

When you use the fine_tune  method, fastai will use these tricks for you. There are a few

parameters you can set (which we'll discuss later), but in the default form shown here, it does

two steps:

1. Use one epoch to fit just those parts of the model necessary to get the new random head to

work correctly with your dataset

2. Use the number of epochs requested when calling the method to fit the entire model,

updating the weights of the later layers (especially the head) faster than the earlier layers

(which, as we'll see, generally don't require many changes from the pretrained weights)

The head of a model is the part that is newly added to be specific to the new dataset. An epoch

is one complete pass through the dataset. After calling fit , the results after each epoch are

printed, showing the epoch number, the training and validation set losses (the "measure of

performance" used for training the model), and any metrics you've requested (error rate, in this

case).

So, with all this code our model learned to recognize cats and dogs just from labeled examples.

But how did it do it?

What our image recognizer learned
At this stage we have an image recogniser that is working very well, but we have no idea what it

is actually doing! Although many people complain that deep learning results in impenetrable

"black box" models (that is, something that gives predictions but that no one can understand),

this really couldn't be further from the truth. There is a vast body of research showing how to

deeply inspect deep learning models, and get rich insights from them. Having said that, all kinds

of machine learning models (including deep learning, and traditional statistical models) can be

challenging to fully understand, especially when considering how they will behave when coming

across data that is very different to the data used to train them. We'll be discussing this issue

throughout this book.

In 2013 a PhD student, Matt Zeiler, and his supervisor, Rob Fergus, published the paper

Visualizing and Understanding Convolutional Networks, which showed how to visualise the

neural network weights learned in each layer of a model. They carefully analysed the model that

won the 2012 ImageNet competition, and used this analysis to greatly improve the model, such

https://arxiv.org/pdf/1311.2901.pdf
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that they were able to go on to win the 2013 competition! <> is the picture that they published

of the first layers' weights.

Activations of early layers of a CNN

This picture requires some explanation. For each layer, the image part with the light grey

background shows the reconstructed weights pictures, and the other section shows the parts of

the training images which most strongly matched each set of weights. For layer 1, what we can

see is that the model has discovered weights which represent diagonal, horizontal, and vertical

edges, as well as various different gradients. (Note that for each layer only a subset of the

features are shown; in practice there are thousands across all of the layers.) These are the basic

building blocks that it has created automatically for computer vision. They have been widely

analysed by neuroscientists and computer vision researchers, and it turns out that these learned

building blocks are very similar to the basic visual machinery in the human eye, as well as the

handcrafted computer vision features that were developed prior to the days of deep learning.

The next layer is represented in <>.

Activations of early layers of a CNN

For layer 2, there are nine examples of weight reconstructions for each of the features found by

the model. We can see that the model has learned to create feature detectors that look for

corners, repeating lines, circles, and other simple patterns. These are built from the basic

building blocks developed in the first layer. For each of these, the right-hand side of the picture

shows small patches from actual images which these features most closely match. For instance,

the particular pattern in row 2 column 1 matches the gradients and textures associated with

sunsets.

<> shows the image from the paper showing the results of reconstructing the features of layer

3.

Activations of medium layers of a CNN

As you can see by looking at the right-hand side of this picture, the features are now able to

identify and match with higher levels semantic components, such as car wheels, text, and flower

petals. Using these components, layers four and five can identify even higher-level concepts, as

shown in <>.

Activations of end layers of a CNN

This article was studying an older model called AlexNet  that only contained five layers.

Networks developed since then can have hundreds of layers--so you can imagine how rich the

features developed by these models can be!

When we fine-tuned our pretrained model earlier, we adapted what those last layers focus on

(flowers, humans, animals) to specialize on the cats versus dogs problem. More generally, we

could specialize such a pretrained problem on many different tasks. Let's have a look at some

examples.

Image recognizers can tackle non-image tasks
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An image recogniser can, as its name suggests, only recognise images. But a lot of things can

be represented as images, which means that an image recogniser can learn to complete many

tasks.

For instance, a sound can be converted to a spectrogram, which is a chart that shows the

amount of each frequency at each time in an audio file. Fast.ai student Ethan Sutin used this

approach to easily beat the published accuracy on environmental sound detection using a

dataset of 8732 urban sounds. fastai's show_batch  clearly shows how each different sound

has a quite distinctive spectrogram, as you can see in <>.

show_batch with spectrograms of sounds

Time series can be easily converted into an image by simply plotting the time series in a graph.

However, it is often a good idea to try to represent your data in a way that makes it as easy as

possible to pull out the most important components. In a time-series, things like seasonality and

anomalies are most likely to be of interest. There are various transformations available for time

series data; for instance, fast.ai student Ignacio Oguiza created images from a time series data

set for olive oil classification. He used a technique called Gramian Angular Field (GAF), and you

can see the result in <>. He then fed those images to an image classification model just like the

one you see in this chapter. His results, despite having only 30 training set images, were well

over 90% accurate, and close to the state-of-the-art.

Converting a time series into an image

Another interesting fast.ai student project example comes from Gleb Esman. He was working on

fraud detection at Splunk, and was working with a dataset of users' mouse movements and

mouse clicks. He turned these into pictures by drawing an image where the position, speed and

acceleration of the mouse was displayed using coloured lines, and the clicks were displayed

using small coloured circles as shown in <>. He then fed this into an image recognition model

just like the one we've shown in this chapter, and it worked so well that had led to a patent for

this approach to fraud analytics!

Converting computer mouse behavior to an image

Another examples comes from the paper Malware Classification with Deep Convolutional Neural

Networks which explains that "the malware binary file is divided into 8-bit sequences which are

then converted to equivalent decimal values. This decimal vector is reshaped and gray-scale

image is generated that represent the malware sample", like in <>.

Malware classification process

They then show "pictures" generated through this process of malware in different categories, as

shown in <>.

Malware examples

As you can see, the different types of malware look very distinctive to the human eye. The

model they train based on this image representation was more accurate at malware

classification than any previous approach shown in the academic literature. This suggests a

good rule of thumb for converting a dataset into an image representation: if the human eye can

recognize categories from the images, then a deep learning model should be able to do so too.

https://medium.com/@etown/great-results-on-audio-classification-with-fastai-library-ccaf906c5f52
https://www.splunk.com/en_us/blog/security/deep-learning-with-splunk-and-tensorflow-for-security-catching-the-fraudster-in-neural-networks-with-behavioral-biometrics.html
https://ieeexplore.ieee.org/abstract/document/8328749
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In general, you'll find that a small number of general approaches in deep learning can go a long

way, if you're a bit creative in how you represent your data! You shouldn't think of approaches

like the above as "hacky workarounds", since actually they often (as here) beat previously state

of the art results. These really are the right way to think about these problem domains.

Jargon recap
We just covered a lot of information so let's recap briefly. <> provides a handy list.

asciidoc

[[dljargon]]

.Deep learning vocabulary

[options="header"]

|=====

| Term | Meaning

|**label** | The data that we're trying to predict, such as "dog" 
or "cat"

|**architecture** | The _template_ of the model that we're trying 
to fit; the actual mathematical function that we're passing the 
input data and parameters to
|**model** | the combination of the architecture with a particular 
set of parameters

|**parameters** | the values in the model that change what task it 
can do, and are updated through model training

|**fit** | Update the parameters of the model such that the 
predictions of the model using the input data match the target 
labels

|**train** | A synonym for _fit_

|**pretrained model** | A model that has already been trained, 
generally using a large dataset, and will be fine-tuned

|**fine tune** | Update a pretrained model for a different task
|**epoch** | One complete pass through the input data

|**loss** | A measure of how good the model is, chosen to drive 
training via SGD

|**metric** | A measurement of how good the model is, using the 
validation set, chosen for human consumption

|**validation set** | A set of data held out from training, used 
only for measuring how good the model is

|**training set** | The data used for fitting the model; does not 
include any data from the validation set

|**overfitting** | Training a model in such a way that it 
_remembers_ specific features of the input data, rather than 
generalizing well to data not seen during training

|**CNN** | Convolutional neural network; a type of neural network 
that works particularly well for computer vision tasks

|=====

With this vocabulary in hand, we are now in a position to bring together all the key concepts so

far. Take a moment to review those definitions and read the following summary. If you can follow

the explanation, then you have laid down the basic coordinates for understanding many

discussions to come.



4/1/22, 4:12 PM 01_intro-Copy1

file:///Users/mathewmiller/Downloads/01_intro-Copy1.html 31/43

Machine learning is a discipline where we define a program not by writing it entirely ourselves,

but by learning from data. Deep learning is a specialty within machine learning which uses

neural networks using multiple layers. Image classification is a representative example (also

known as image recognition). We start with labeled data, that is, a set of images where we have

assigned a label to each image indicating what it represents. Our goal is to produce a program,

called a model, which, given a new image, will make an accurate prediction regarding what that

new image represents.

Every model starts with a choice of architecture, a general template for how that kind of model

works internally. The process of training (or fitting) the model is the process of finding a set of

parameter values (or weights) which specializes that general architecture into a model that

works well for our particular kind of data. In order to define how well a model does on a single

prediction, we need to define a loss function, which defines how we score a prediction as good

or bad, in order to support training.

In order to make the training process go faster, we might start with a pretrained model, a model

which has already been trained on someone else's data. We then adapt it to our data by training

it a bit more on our data, a process called fine tuning.

When we train a model, a key concern is to ensure that our model generalizes -- that is, that it

learns general lessons from our data which also apply to new items it will encounter, so that it

can make good predictions on those items. The risk is that if we train our model badly, instead

of learning general lessons it effectively memorizes what it has already seen, and then it will

make poor predictions about new images. Such a failure is called overfitting. In order to avoid

this, we always divide our data into two parts, the training set and the validation set. We train

the model by showing it only the training set and then we evaluate how well the model is doing

by seeing how well it predicts on items from the validation set . In this way, we check if the

lessons the model learns from the training set are lessons that generalize to the validation set.

In order for a person to assess how well the model is doing on the validation set overall, we

define a metric . During the training process, when the model has seen every item in the training

set, we call that an epoch.

All these concepts apply to machine learning in general. That is, they apply to all sorts of

schemes for defining a model by training it with data. What makes deep learning distinctive is a

particular class of architectures, the architectures based on neural networks. In particular, tasks

like image classification rely heavily on convolutional neural networks, which we will discuss

shortly.

Deep learning is not just for image classification
Deep learning's effectiveness for classifying images has been widely discussed in recent years,

even showing super-human results on complex tasks like recognizing malignant tumours in CT

scans. But it can do a lot more than this, as we will show here.

For instance, let's talk about something that is critically important for autonomous vehicles:

localising objects in a picture. If a self-driving car doesn't know where a pedestrian is, then it
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doesn't know how to avoid one! Creating a model which can recognize the content of every

individual pixel in an image is called segmentation. Here is how we can train a segmentation

model using fastai, using a subset of the Camvid dataset from the paper Semantic Object

Classes in Video: A High-Definition Ground Truth Database:

100.18% [2318336/2314212 00:00<00:00]

epoch train_loss valid_loss time

0 2.667020 2.518456 00:02

epoch train_loss valid_loss time

0 1.847760 1.492310 00:01

1 1.589073 1.247304 00:01

2 1.407862 1.123045 00:01

3 1.259581 0.932523 00:01

4 1.130517 0.973192 00:01

5 1.027547 0.799841 00:01

6 0.938767 0.771569 00:01

7 0.868429 0.764602 00:01

We are not even going to walk through this code line by line, because it is nearly identical to our

previous example! (Although we will, of course, be doing a deep dive into segmentation models

in <>, along with all of the other models that we are briefly introducing in this chapter, and many,

many more.)

We can visualise how well it achieved its task, by asking the model to color code each pixel of an

image. As you can see, it nearly perfectly classifies every pixel in every object; for instance,

notice that all of the cars are overlaid with the same colour, and all of the trees are overlaid with

the same color (in each pair of images, the left hand image is the ground truth labels, the right

hand is the predictions from the model):

In [13]: path = untar_data(URLs.CAMVID_TINY)

dls = SegmentationDataLoaders.from_label_func(
    path, bs=8, fnames = get_image_files(path/"images"),

    label_func = lambda o: path/'labels'/f'{o.stem}_P{o.suffix}',

    codes = np.loadtxt(path/'codes.txt', dtype=str)

)



learn = unet_learner(dls, resnet34)

learn.fine_tune(8)


In [14]: learn.show_results(max_n=6, figsize=(7,8))


http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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One other area where deep learning has dramatically improved in the last couple of years is

natural language processing (NLP). Computers can now generate text, translate automatically

from one language to another, analyze comments, label words in sentences, and much more.

Here is all of the code necessary to train a model which can classify the sentiment of a movie

review better than anything that existed in the world just five years ago:

epoch train_loss valid_loss accuracy time

0 0.459859 0.400997 0.818640 00:43

epoch train_loss valid_loss accuracy time

0 0.307206 0.240368 0.901800 01:18

1 0.240177 0.205541 0.920160 01:18

2 0.181079 0.199449 0.928280 01:18

3 0.157887 0.196001 0.927520 01:18

In [15]: from fastai.text.all import *



dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')

learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, metrics=accuracy)

learn.fine_tune(4, 1e-2)
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This model is using the IMDb dataset from the paper Learning Word Vectors for Sentiment

Analysis). It works well with movie reviews of many thousands of words. But let's test it out on a

very short one, to see it does its thing:

('pos', tensor(1), tensor([5.8537e-05, 9.9994e-01]))

Here we can see the model has considered the review to be positive. The second part of the

result is the index of "pos" in our data vocabulary and the last part is the probabilities attributed

to each class (99.6% for "pos" and 0.4% for "neg").

Now it's your turn! Write your own mini movie review, or copy one from the Internet, and we can

see what this model thinks about it.

Sidebar: The order matter
In a Jupyter notebook, the order in which you execute each cell is very important. It's not like

Excel, where everything gets updated as soon as you type something anywhere, but it has an

inner state that gets updated each time you execute a cell. For instance, when you run the first

cell of the notebook (with the CLICK ME comment), you create an object learn  that contains

a model and data for an image classification problem. If we were to run the cell right above (the

one that predicts if a review is good or not) straight after, we would get an error as this learn
object does not contain a text classification model. This cell needs to be run after the one

containing

from fastai2.text.all import *



dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')

learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, 

                                metrics=accuracy)

learn.fine_tune(4, 1e-2)


The outputs themselves can be deceiving: they have the results of the last time the cell was

executed, but if you change the code inside a cell without executing it, the old (misleading)

results will remain.

Except when we mention it explicitly, the notebooks provided on the book website are meant to

be run in order, from top to bottom. In general, when experimenting, you will find yourself

executing cells in any order to go fast (which is a super neat feature of Jupyter Notebooks) but

once you have explored and arrive at the final version of your code, make sure you can run the

cells of your notebooks in order (your future self won't necessarily remember the convoluted

path you took otherwise!).

In command mode, pressing 0  twice will restart the kernel (which is the engine powering your

notebook). This will wipe your state clean and make it as if you had just started in the notebook.

Click on the "Cell" menu and then on "Run All Above" to run all cells above the point where you

are. We have found this to be very useful when developing the fastai library.

In [16]: learn.predict("I really liked that movie!")


Out[16]:

file:///Users/mathewmiller/Downloads/(https://ai.stanford.edu/~amaas/data/sentiment/
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End sidebar
If you ever have any questions about a fastai method, you should use the function doc :

doc(learn.predict)


This will make a small window pop with content like this:

A brief one-line explanation is provided by doc . The show in docs link is where you'll find all

the details in the full documentation, and lots of examples. Also, most of fastai's methods are

just a handful of lines, so you can click the source link to see exactly what's going on behind the

scenes.

Let's move on to something much less sexy, but perhaps significantly more widely commercially

useful: building models from plain tabular data. It turns out that looks very similar too. Here is

the code necessary to train a model which will predict whether a person is a high-income

earner, based on their socio-economic background:

jargon: Tabular: Data that is in the form of a table, such as from a spreadsheet,

database, or CSV file. A tabular model is a model which tries to predict one

column of a table based on information in other columns of a table.

100.69% [974848/968212 00:00<00:00]

As you see, we had to tell fastai which columns are categorical (that is, they contain values that

are one of a discrete set of choices, such as occupation ), versus continuous (that is, they

contain a number that represents a quantity, such as age ).

There is no pretrained model available for this task (in general, pretrained models are not widely

available for any tabular modeling tasks, although some organizations have created them for

internal use), so we don't use fine_tune  in this case, but instead fit_one_cycle , the

most commonly used method for training fastai models from scratch (i.e. without transfer

learning):

epoch train_loss valid_loss accuracy time

In [17]: from fastai.tabular.all import *

path = untar_data(URLs.ADULT_SAMPLE)



dls = TabularDataLoaders.from_csv(path/'adult.csv', path, y_names="salary",

    cat_names = ['workclass', 'education', 'marital-status', 'occupation',

                 'relationship', 'race'],

    cont_names = ['age', 'fnlwgt', 'education-num'],

    procs = [Categorify, FillMissing, Normalize])



learn = tabular_learner(dls, metrics=accuracy)


In [18]: learn.fit_one_cycle(3)


https://docs.fast.ai/
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epoch train_loss valid_loss accuracy time

0 0.381104 0.357087 0.832002 00:04

1 0.358382 0.347734 0.835688 00:04

2 0.347142 0.344169 0.840448 00:04

This model is using the adult dataset, from the paper Scaling Up the Accuracy of Naive-Bayes

Classifiers: a Decision-Tree Hybrid, which contains some data regarding individuals (like their

education, marital status, race, sex, etc.) and whether or not they have an annual income

greater than $50k. The model is over 80\% accurate, and took around 30 seconds to train.

Let's look at one more. Recommendation systems are very important, particularly in e-

commerce. Companies like Amazon and Netflix try hard to recommend products or movies

which you might like. Here's how to train a model which will predict which people might like

which movie, based on their previous viewing habits, using the MovieLens dataset:

110.72% [57344/51790 00:00<00:00]

epoch train_loss valid_loss time

0 1.525607 1.433031 00:00

epoch train_loss valid_loss time

0 1.365996 1.371801 00:00

1 1.251946 1.184150 00:00

2 1.004050 0.875378 00:00

3 0.789740 0.738321 00:00

4 0.683325 0.705283 00:00

5 0.641180 0.694728 00:00

6 0.624207 0.690513 00:00

7 0.602270 0.689152 00:00

8 0.601474 0.688069 00:00

9 0.599375 0.687988 00:00

This model is predicting movie ratings on a scale of 0.5 to 5.0 to within around 0.6 average error.

Since we're predicting a continuous number, rather than a category, we have to tell fastai what

range our target has, using the y_range  parameter.

Although we're not actually using a pretrained model (for the same reason that we didn't for the

tabular model), this example shows that fastai lets us use fine_tune  even in this case (we'll

In [19]: from fastai.collab import *

path = untar_data(URLs.ML_SAMPLE)

dls = CollabDataLoaders.from_csv(path/'ratings.csv')

learn = collab_learner(dls, y_range=(0.5,5.5))

learn.fine_tune(10)


https://archive.ics.uci.edu/ml/datasets/adult
https://doi.org/10.1145/2827872
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learn how and why this works later in <>). Sometimes it's best to experiment with fine_tune
versus fit_one_cycle  to see which works best for your dataset.

We can use the same show_results  call we saw earlier to view a few examples of user and

movie IDs, actual ratings, and predictions:

userId movieId rating rating_pred

0 45.0 56.0 5.0 3.295857

1 63.0 26.0 3.0 2.997506

2 87.0 60.0 4.0 4.435205

3 98.0 51.0 5.0 4.585992

4 80.0 62.0 3.5 3.864863

5 52.0 55.0 4.0 4.455365

6 90.0 30.0 2.0 3.478552

7 18.0 90.0 3.0 3.713112

8 29.0 46.0 3.0 3.267631

Sidebar: Datasets: food for models
You’ve already seen in this section quite a few models, each one trained using a different

dataset, to do a different task. In machine learning and deep learning, we can’t do anything

without data. So, the people that create datasets for us to train our models are the (often under-

appreciated) heroes. Some of the most useful and important datasets are those that become

important academic baselines; that is, datasets that are widely studied by researchers and used

to compare algorithmic changes. Some of these become household names (at least, among

households that train models!), such as MNIST, CIFAR 10, and ImageNet.

The datasets used in this book have been selected because they provide great examples of the

kind of data that you are likely to encounter, and the academic literature has many examples of

model results using these datasets which you can compare your work to.

Most datasets used in this book took the creators a lot of work to build. For instance, later in the

book we’ll be showing you how to create a model that can translate between French and

English. The key input to this is a French/English parallel text corpus prepared back in 2009 by

Professor Chris Callison-Burch of the University of Pennsylvania. This dataset contains over 20

million sentence pairs in French and English. He built the dataset in a really clever way: by

crawling millions of Canadian web pages (which are often multi-lingual) and then using a set of

simple heuristics to transform French URLs onto English URLs.

As you look at datasets throughout this book, think about where they might have come from,

and how they might have been curated. Then, think about what kinds of interesting dataset you

In [20]: learn.show_results()
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could create for your own projects. (We’ll even take you step by step through the process of

creating your own image dataset soon.)

fast.ai has spent a lot of time creating cutdown versions of popular datasets that are specially

designed to support rapid prototyping and experimentation, and to be easier to learn with. In

this book we will often start by using one of the cutdown versions, and we later on scale up to

the full-size version (just as we're doing in this chapter!) In fact, this is how the world’s top

practitioners do their modelling projects in practice; they do most of their experimentation and

prototyping with subsets of their data, and only use the full dataset when they have a good

understanding of what they have to do.

End sidebar
Each of the models we trained showed a training and validation loss. A good validation set is one

of the most important pieces of your training, let's see why and learn how to create one.

Validation sets and test sets
As we've discussed, the goal of a model is to make predictions about data. But the model

training process is fundamentally dumb. If we trained a model with all our data, and then

evaluated the model using that same data, we would not be able to tell how well our model can

perform on data it hasn’t seen. Without this very valuable piece of information to guide us in

training our model, there is a very good chance it would become good at making predictions

about that data but would perform poorly on new data.

It is in order to avoid this that our first step was to split our dataset into two sets, the training set

(which our model sees in training) and the validation set, also known as the development set

(which is used only for evaluation). This lets us test that the model learns lessons from the

training data which generalize to new data, the validation data.

One way to understand this situation is that, in a sense, we don't want our model to get good

results by "cheating". If it predicts well on a data item, that should be because it has learned

principles that govern that kind of item, and not because the model has been shaped by actually

having seeing that particular item.

Splitting off our validation data means our model never sees it in training, and so is completely

untainted by it, and is not cheating in any way. Right?

In fact, not necessarily. The situation is more subtle. The subtlety is that in realistic scenarios we

rarely build a model just by training its weight parameters once. Instead we are likely to explore

many versions of a model through various modelling choices regarding network architecture,

learning rates, data augmentation strategies, and other factors we will discuss in upcoming

chapters. Many of these choices can be described as choices of hyperparameters. The word

reflects that they are parameters about parameters, since they are the higher-level choices that

govern the meaning of the weight parameters.

The problem is that, even though the ordinary training process is only looking at predictions on
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the training data when it learns values for the weight parameters, the same is not true about us.

We, as modellers, are evaluating the model by looking at predictions on the validation data,

when we decide to explore new hyperparameter values! So subsequent versions of the model

are, indirectly, shaped by having seen the validation data. Just as the automatic training process

is in danger of overfitting the training data, we are in danger of overfitting the validation data, by

human trial and error and exploration.

The solution to this conundrum is to introduce another level of even more highly reserved data,

the "test set". Just as we hold back the validation data from the training process, we must hold

back the test set data even from ourselves. It cannot be used to improve the model; it can only

be used to evaluate the model at the very end of our efforts. In effect, we define a hierarchy of

cuts of our data, based on how fully we want to hide it from training and modelling processes --

training data is fully exposed, the validation data is less exposed, and test data is totally hidden.

This hierarchy parallels the different kinds of modelling and evaluation processes themselves --

the automatic training process with back propagation, the more manual process of trying

different hyper-parameters between training sessions, and the assessment of our final result.

The test and validation sets should have enough data to ensure that you get a good estimate of

your accuracy. If you're creating a cat detector, for instance, you generally want at least 30 cats

in your validation set. That means that if you have a dataset with thousands of items, using the

default 20% validation set size may be larger than you need. On the other hand, if you have lots

of data, using some of it for the validation probably doesn't have any downsides.

Having two levels of "reserved data", a validation set and a test set -- with one level

representing data which you are virtually hiding from yourself -- may seem a bit extreme. But

the reason it is often necessary is because models tend to gravitate toward the simplest way to

do good predictions (memorization), and we as fallible humans tend to gravitate toward fooling

ourselves about how well our models are performing. The discipline of the test set helps us keep

ourselves intellectually honest. That doesn't mean we always need a separate test set--if you

have very little data, you may need to just have a validation set--but generally it's best to use

one if at all possible.

This same discipline can be critical if you intend to hire a third-party to perform modelling work

on your behalf. A third-party might not understand your requirements accurately, or their

incentives might even encourage them to misunderstand them. But a good test set can greatly

mitigate these risks and let you evaluate if their work solves your actual problem.

To put it bluntly, if you're a senior decision maker in your organization (or you're advising senior

decision makers) then the most important takeaway is this: if you ensure that you really

understand what test and validation sets are, and why they're important, then you'll avoid the

single biggest source of failures we've seen when organizations decide to use AI. For instance,

if you're considering bringing in an external vendor or service, make sure that you hold out some

test data that the vendor never gets to see. Then you check their model on your test data, using

a metric that you choose based on what actually matters to you in practice, and you decide

what level of performance is adequate. (It's also a good idea for you to try out some simple
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baseline yourself, so you know what a really simple model can achieve. Often it'll turn out that

your simple model can be just as good as an external "expert"!)

Use judgment in defining test sets
To do a good job of defining a validation set (and possibly a test set), you will sometimes want

to do more than just randomly grab a fraction of your original dataset. Remember: a key

property of the validation and test sets is that they must be representative of the new data you

will see in the future. This may sound like an impossible order! By definition, you haven’t seen

this data yet. But you usually still do know some things.

It's instructive to look at a few example cases. Many of these examples come from predictive

modeling competitions on the Kaggle platform, which is a good representation of problems and

methods you would see in practice.

One case might be if you are looking at time series data. For a time series, choosing a random

subset of the data will be both too easy (you can look at the data both before and after the

dates your are trying to predict) and not representative of most business use cases (where you

are using historical data to build a model for use in the future). If your data includes the date and

you are building a model to use in the future, you will want to choose a continuous section with

the latest dates as your validation set (for instance, the last two weeks or last month of the

available data).

Suppose you want to split the time series data in <> into training and validation sets.

A serie of values

A random subset is a poor choice (too easy to fill in the gaps, and not indicative of what you'll

need in production), as we can see in <>.

Random training subset

Use the earlier data as your training set (and the later data for the validation set), as shown in

<>.

Training subset using the data up to a certain timestamp

For example, Kaggle had a competition to predict the sales in a chain of Ecuadorian grocery

stores. Kaggle's training data ran from Jan 1 2013 to Aug 15 2017 and the test data spanned Aug

16 2017 to Aug 31 2017. That way, the competition organizer ensured that entrants were making

predictions for a time period that was in the future, from the perspective of their model. This is

similar to the way quant hedge fund traders do back-testing to check whether their models are

predictive of future periods, based on past data.

After time series, a second common case is when you can easily anticipate ways the data you

will be making predictions for in production may be qualitatively different from the data you

have to train your model with.

In the Kaggle distracted driver competition, the independent variables are pictures of drivers at

the wheel of a car, and the dependent variable is a category such as texting, eating, or safely

looking ahead. Lots of pictures were of the same drivers in different positions, as we can see in

https://www.kaggle.com/c/favorita-grocery-sales-forecasting
https://www.kaggle.com/c/state-farm-distracted-driver-detection


4/1/22, 4:12 PM 01_intro-Copy1

file:///Users/mathewmiller/Downloads/01_intro-Copy1.html 41/43

<>. If you were the insurance company building a model from this data, note that you would be

most interested in how the model performs on drivers you haven't seen before (since you would

likely have training data only for a small group of people). This is true of the Kaggle competition

as well: the test data consists of people that weren't used in the training set.

Two pictures from the training data, showing the same driver

If you put one of the above images in your training set and one in the validation set, your model

will seem to be performing better than it would on new people. Another perspective is that if you

used all the people in training your model, your model may be overfitting to particularities of

those specific people, and not just learning the states (texting, eating, etc).

A similar dynamic was at work in the Kaggle fisheries competition to identify the species of fish

caught by fishing boats in order to reduce illegal fishing of endangered populations. The test set

consisted of boats that didn't appear in the training data. This means that you'd want your

validation set to include boats that are not in the training set.

Sometimes it may not be clear how your validation data will differ. For instance, for a problem

using satellite imagery, you'd need to gather more information on whether the training set just

contained certain geographic locations, or if it came from geographically scattered data.

Now that you have got a taste of how to build a model, you can decide what you want to dig into

next.

A Choose Your Own Adventure moment
If you would like to learn more about how to use deep learning models in practice, including

identifying and fixing errors, and creating a real working web application, and how to avoid your

model causing unexpected harm to your organization or society more generally, then keep

reading the next chapters, From model to production, and Data ethics. If you would like to start

learning the foundations of how deep learning works under the hood, skip to <>, Under the

hood: training a digit classifier. (Did you ever read Choose Your Own Adventure books as a kid?

Well, this is kind of like that… except with more deep learning than that book series contained.)

Either way, you will need to read all these chapters in order to progress further in the book; but it

is totally up to you which order you read them in. They don't depend on each other. If you skip

ahead to <>, then we will remind you at the end of that section to come back and read the

chapters you skipped over before you go any further.

Questionnaire
It can be hard to know in pages and pages of prose what are the key things you really need to

focus on and remember. So we've prepared a list of questions and suggested steps to complete

at the end of each chapter. All the answers are in the text of the chapter, so if you're not sure

about anything here, re-read that part of the text and make sure you understand it. Answers to

all these questions are also available on the book website. You can also visit the forums if you

get stuck to get help from other folks studying this material.

https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring
https://book.fast.ai/
https://forums.fast.ai/
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1. Do you need these for deep learning?

Lots of math T / F

Lots of data T / F

Lots of expensive computers T / F

A PhD T / F

2. Name five areas where deep learning is now the best in the world.

3. What was the name of the first device that was based on the principle of the artificial

neuron?

4. Based on the book of the same name, what are the requirements for "Parallel Distributed

Processing"?

5. What were the two theoretical misunderstandings that held back the field of neural

networks?

6. What is a GPU?

7. Open a notebook and execute a cell containing: 1+1 . What happens?

8. Follow through each cell of the stripped version of the notebook for this chapter. Before

executing each cell, guess what will happen.

9. Complete the Jupyter Notebook online appendix.

10. Why is it hard to use a traditional computer program to recognize images in a photo?

11. What did Samuel mean by "Weight Assignment"?

12. What term do we normally use in deep learning for what Samuel called "Weights"?

13. Draw a picture that summarizes Arthur Samuel's view of a machine learning model

14. Why is it hard to understand why a deep learning model makes a particular prediction?

15. What is the name of the theorem that a neural network can solve any mathematical problem

to any level of accuracy?

16. What do you need in order to train a model?

17. How could a feedback loop impact the rollout of a predictive policing model?

18. Do we always have to use 224x224 pixel images with the cat recognition model?

19. What is the difference between classification and regression?

20. What is a validation set? What is a test set? Why do we need them?

21. What will fastai do if you don't provide a validation set?

22. Can we always use a random sample for a validation set? Why or why not?

23. What is overfitting? Provide an example.

24. What is a metric? How does it differ to "loss"?

25. How can pretrained models help?

26. What is the "head" of a model?

27. What kinds of features do the early layers of a CNN find? How about the later layers?

28. Are image models only useful for photos?

29. What is an "architecture"?

30. What is segmentation?

31. What is y_range  used for? When do we need it?

32. What are "hyperparameters"?

33. What's the best way to avoid failures when using AI in an organization?

Further research
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Each chapter also has a "further research" with questions that aren't fully answered in the text,

or include more advanced assignments. Answers to these questions aren't on the book website-

-you'll need to do your own research!

1. Why is a GPU useful for deep learning? How is a CPU different, and why is it less effective

for deep learning?

2. Try to think of three areas where feedback loops might impact use of machine learning. See

if you can find documented examples of that happening in practice.


