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Three-Dimensional Computer-Aided Diagnosis
Scheme for Detection of Colonic Polyps

Hiroyuki Yoshida*, Member, IEEE,and Janne Näppi

Abstract—We have developed a three-dimensional (3-D) com-
puter-aided diagnosis scheme for automated detection of colonic
polyps in computed tomography (CT) colonographic data sets, and
assessed its performance based on colonoscopy as the gold stan-
dard. In this scheme, a thick region encompassing the entire colonic
wall is extracted from an isotropic volume reconstructed from the
CT images in CT colonography. Polyp candidates are detected by
first computing of 3-D geometric features that characterize polyps,
folds, and colonic walls at each voxel in the extracted colon, and
then segmenting of connected components corresponding to suspi-
cious regions by hysteresis thresholding based on these geometric
features. We apply fuzzy clustering to these connected components
to obtain the polyp candidates. False-positive (FP) detections are
then reduced by computation of several 3-D volumetric features
characterizing the internal structures of the polyp candidates, fol-
lowed by the application of discriminant analysis to the feature
space generated by these volumetric features. The locations of the
polyps detected by our computerized method were compared to
the gold standard of conventional colonoscopy. The performance
was evaluated based on 43 clinical cases, including 12 polyps de-
termined by colonoscopy. Our computerized scheme was shown to
have the potential to detect polyps in CT colonography with a clin-
ically acceptable high sensitivity and a low FP rate.

Index Terms—Colon cancer, computer-aided diagnosis, CT
colonography, polyp detection, virtual colonoscopy.

I. INTRODUCTION

COLON cancer is the second leading cause of cancer
deaths in the United States, with approximately 60 000

deaths/year [1]. Studies show that early detection and removal
of colonic polyps can reduce the risk of colon cancer and, thus,
result in a decrease in the mortality rate from colorectal cancer
[2]. Computed tomographic colonography(CTC) or virtual
colonoscopyis a technique for detecting colorectal neoplasms
by using a computed tomography (CT) scan of the cleansed
and air-distended colon [2]. Current CT technology allows a
single image set of the colon to be acquired in 20–30 s, which
translates into an easier, more comfortable examination than
is available with other screening tests. Therefore, CTC has
been advocated as a promising technique for providing mass
screening for colorectal carcinoma [3]–[5].

For CTC to be a clinically practical means of screening for
colon cancers, the technique must be feasible for interpreting
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a large number of images in a time-effective fashion, and for
detecting polyps and masses with high accuracy. Currently,
however, the interpretation of an entire CTC examination is
time-consuming [3], [6]. A typical CTC examination produces
150–350 axial CT images each for the supine and prone
imaging data sets, yielding a total of 300–700 images/patient.
Despite the recent advances in image-display techniques [7],
studies show that the case interpretation time is still between 15
and 40 min even when reading is done by experts in abdominal
imaging [3], [6]. The interpretation time for an entire CTC
examination should be reduced substantially before CTC can
be translated from the research area to routine clinical practice,
and especially to the screening setting [8]. In addition, the di-
agnostic performance of CTC currently remains undetermined
and prone to perceptual errors [3], [9]. Several studies have
shown a high sensitivity of 80%–100% and a specificity of
80%–90% in the detection of polyps [10], [11], whereas others
have reported a relatively low sensitivity of 40%–70% and a
specificity of 70%–80% [12], [13]. It has been suggested that
these differences in sensitivity and specificity for CTC are
partly based on the undefined learning curve for the interpreta-
tion of CTC [14]. Moreover, the visibility and conspicuity of
polyps and, thus, the accuracy of polyp detection, may depend
on the image acquisition parameters and display methods, both
of which are still under investigation [15], [16]. These factors
increase the perceptual error even for experienced observers
[9].

Computer-aided detection (CAD) of polyps is attractive be-
cause it has the potential to overcome the above difficulties with
CTC [17]. A CAD scheme automatically detects polyps and
masses in CTC images, and it provides the locations of suspi-
cious polyps to radiologists. The “second opinion” offered by a
CAD scheme has the potential to reduce radiologists’ interpre-
tation time and to increase radiologists’ diagnostic performance
in the detection of polyps. Reduction of interpretation time can
be achieved if radiologists focus on the small number of re-
gions indicated by the CAD scheme. Radiologists can quickly
survey a large portion of the colon that is likely to be normal.
An improvement in the detection performance can be achieved
because CAD can potentially reduce radiologists’ perceptual er-
rors.

In the past several years, investigators have developed proto-
type CAD schemes for detecting polyps with CTC. Summerset
al. [18], [19] and Vininget al. [20], [21] have proposed CAD
schemes that extract the surface of the colonic wall and eval-
uate the curvature of the surface to detect polyps. Paiket al.
[22], [23] proposed a CAD scheme based on a contour normal
method that is based on the directions of the normal vectors
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from air to tissue. These schemes showed a potential to detect
polyps in CTC because they provided a high detection perfor-
mance when they were applied to simulated polyps. However,
these existing schemes suffered from either a low sensitivity or
a high false-positive (FP) rate when they were applied to clinical
cases. When these schemes are set to yield a clinically accept-
able sensitivity of 85%–100%, the number of FPs increases in
the range of 20 to more than 100/case [21], [23]. When the FP
rate is set to a value of as low as 3.5, the sensitivity decreases to
50%–70% [19].

In this paper, we present a high-performance, fully auto-
mated 3-D CAD scheme based on our previously reported CAD
scheme [17]. Similar to existing CAD schemes, our scheme
extracts the colon in which the polyps are detected. However,
our scheme is unique in that it extracts a thick region that en-
compasses the entire colonic wall (Section III). Other methods
attempt to extract only the surface of the colon [18], [24]. Our
approach has an advantage over the surface-generation method
in that it can extract entire polyps, including their internal
structure that can be used for the reduction of FPs. The sur-
face-generation method has a risk of losing a part of the polyp,
particularly the internal structure and, thus, may decrease the
detection performance. This method of extracting colonic walls
has been improved substantially over our previous method [17],
so that we are able to extract a colonic wall alone and remove
the small bowel and stomach adhering to the colonic wall based
on a self-adjusting volume-growing technique (Section III-B).

We also use 3-D geometric features for the detection of polyps
(Section IV). These geometric features are employed specifi-
cally for differentiating polyps from folds and from the colonic
wall and, thus, they can be effective in maximizing sensitivity. In
this paper, in particular, we develop a novel 3-D volumetric fea-
ture, directional gradient concentration, that characterizes the
internal structures of polyps, folds, and stool, and we use this
feature for reducing FPs (Section V). Unlike other schemes that
tend to use features independently to remove FPs, we com-
bine this and other, previously-reported volumetric features by a
linear and a nonlinear classifier to reduce FPs substantially (Sec-
tion VI). In this paper, in particular, we used a classifier based
on quadratic discriminant analysis to achieve a high generality
in the detection of polyps.

The reminder of this paper is organized as follows. Section II
provides a brief overview of our 3-D CAD scheme. Section III
presents an improved colon segmentation method. Section IV
describes a method for the detection of polyp candidates based
on geometric features. Section V introduces several volumetric
features, which are combined by a classifier in Section VI to
reduce FPs. Section VII presents methods for the evaluation of
the performance of the CAD scheme. Sections VIII–X present
the results, discussion, and conclusion.

II. OVERVIEW OF THE CAD SCHEME

A diagram of the detection scheme is shown in Fig. 1. First,
for performing 3-D analysis of the colon and polyps, a 3-D
volume, isotropic in the , , and directions, is generated from
the axial CT images in a CTC data set, by linear interpolation be-
tween the corresponding pixels on the adjacent slices. Then we

Fig. 1. Schematic diagram of the 3-D CAD scheme for the detection of polyps
in CTC.

extract the colon by extracting a set of thick regions that encom-
pass the entire colonic wall (Section III). Polyp candidates are
detected (Section IV) first by computation of two 3-D geometric
features characterizing polyps, folds, and colonic walls at each
voxel of the segmented colon, and then segmentation of con-
nected components by hysteresis thresholding using these geo-
metric features. Fuzzy clustering is applied to these segmented
components for obtaining the polyp candidates. FPs are then re-
duced by computation of 3-D volumetric features that charac-
terize the internal structures of the polyp candidates (Section V).
The final detected polyps are obtained by the application of dis-
criminant analysis to the feature space generated by the volu-
metric features for these polyp candidates (Section VI).

The locations of the polyps detected by our computerized
scheme are compared to those of conventional colonoscopy that
is used as the gold standard. All of these processes are performed
automatically, without human intervention.

III. K NOWLEDGE-GUIDED SEGMENTATION OFCOLON

The isotropic volume generated by linear interpolation may
contain large amounts of anatomic structures other than the
colon. To limit the search space to the polyps within the colon,
and to avoid generating FPs due to the extra-colonic structures,
the entire colon is segmented by using a fully automated
knowledge-guided technique. Specifically, we extract a set
of thick regions that encompasses the entire colonic wall.
Therefore, the extracted colonic wall contains not only the
surface, but also the complete inner structure of the polyps.
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(a) (b) (c) (d)

(e) (f)

Fig. 2. Illustration of colon segmentation. (a) Original CT volume, and segmented (b) outer air (body shown), (c) bones, and (d) lung bases. (e) Segmented colon
based on ABE. Parts of the small bowel (arrow) adhere to the colon. (f) Final segmented colon based on CBA. The parts of the small bowel adhering to the colon
in (e) are removed, and a region encompassing the colon alone is extracted.

The process of colon segmentation consists of two major
steps: 1)anatomy-based extraction(ABE) and 2)colon-based
analysis(CBA) (Fig. 2). The ABE segments the colonic wall
with high sensitivity, but the resulting segmentation, denoted
by , could contain redundant extra-colonic components,
such as small bowel or stomach.Therefore, in the second step,
the CBA produces a segmentation, denoted by, that is used
for removing the extra-colonic components from . The final
segmentation is a digital approximation of the actual colonic
wall. Additional details of the technique are given elsewhere
[25], [26].

In the following, the segmentation of a regionis denoted
by to distinguish between the actual region (e.g., colon) and
its discrete segmentation. The complement of a subset (region)

in set is denoted by . The union of two sets (regions)
and is denoted by , and the intersection is denoted

by .

A. Anatomy-Based Extraction

The ABE is similar to the anatomy-oriented colon seg-
mentation scheme that we presented earlier [25]. The colon
is segmented by application of the following methods to the
3-D isotropic volume: Gaussian smoothing, histogram anal-
ysis, thresholding, edge detection, region-growing, connected
component analysis, and mathematical morphology.

Let , , , and denote the original CT volume,
outer air (the region surrounding the body), bones, and lung

bases, respectively. Let denote the operation of
thresholding the CT value range . First, we search the
global histogram of the original volume for local maxima in
predetermined ranges in order to find the characteristic peaks
that correspond to CT values of air , fat , and muscle

. Details of this procedure are described in [25]. Next,
outer air, , is segmented by 2 ,
followed by a series of morphological operations and con-
nected component analysis. The bone regionis segmented
from by 2 3 100 . To segment lung
bases , we perform a local histogram analysis of the top
region of . The lung bases are segmented by

2 150 ,where is the lung peak
CT value of the local lung histogram (see [25]). The resulting
connected components that are close to the estimated location
of the left and right lung bases are removed.

The segmentation of , , and is performed in reduced
resolution to accelerate the colon segmentation process. To en-
sure that the boundary zone of these regions is also removed,
the segmentations , and are expanded by 2–8 mm by
use of 3-D morphological dilation.

The colon is segmented from the remaining volume
by intersecting of the regions obtained by

800 50 and 950 , where
denotes thresholding of the gradient magnitude. Let
be the set of the resulting connected components, and let
denote the number of voxels in a component. The largest
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component represents the principal region of the colon.
Additional components are included in the colon segmentation
according to

0.01

The set denotes the region segmented by ABE. The thick-
ness of the segmented colonic wall is adjusted to 3–4 mm.

B. Colon-Based Analysis

The segmentation provided by the ABE is of the form

where represents the actual colonic walls is the portion
of the colonic wall not segmented by the ABE, andrepre-
sents extra-colonic components. For polyp detection, we may
assume that (empty set), because, according to our ob-
servations, the portions of the colon not segmented by the ABE
reside within completely collapsed regions that are not of diag-
nostic quality. On the other hand, up to 20% of the FP polyp find-
ings of our original CAD scheme were found to originate from
the extra-colonic components [17]. Therefore, to minimize

, we developed the CBA technique, which essentially imple-
ments a self-adjusting volume-growing scheme to segment the
air within the colonic lumen. Let denote the segmentation
produced by the CBA. The final segmentation of the colon is
obtained by intersection of the two segmentations (ABE)
and (CBA)

(1)

The seed points of the volume-growing step in CBA are de-
tected automatically from . The first seed is chosen from
within the rectum, because this part of the colon can be located
most reliably. First, a volume of interest is extracted from
the 4-cm bottom region of the CT volume that covers. Let

. Then divides into two discon-
nected components: the colonic lumen and the region outside
the colon. The rectum is identified as the second largest con-
nected component within .

The method above assumes that the rectum is located in the
bottom 4 cm of the CT volume that covers the ABE segmenta-
tion . If this is not the case, there are two options. First, the
rectum can be located above this region. The only such cases
we have encountered involve a collapsed rectum, where only a
small isolated region of the rectum is segmented by the method.
In this case, the volume-growing step continues as described
below. In the second case, the rectum is located below the 4-cm
region, and in this case the rectum is collapsed completely or
is not contained within the original CT volume. This situa-
tion may produce multiple disconnected fragments of colon, if
these are connected in the region that is excluded from. To
detect such cases, we check the bottom 20% region of the CT
volume covering after the CBA segmentation is completed,
but before the final segmentation,, is established. The con-
nected components that do not extend above this 20% region
are included in , if they cover a region of at least 1000 mm,
and are connected to the bottom CT slice of the region.

The volume-growing step may need to be continued if the
complete colon is not segmented (the conditions are described
below). Let denote the region that has been segmented by the
most recent volume-growing step. The updated CBA segmen-
tation is the region , where represents expanded
to cover in the desired thickness within the local neighbor-
hood of . Then, if obtained from (1) is still considered in-
complete, the volume-growing process is continued by choice
of a seed point from within the largest nonsegmented air-filled
region.

Six conditions are used for testing whetherrepresents a
complete colon. First, the amount of voxels removed from
is limited according to 0.50, where

denotes the number of voxels within the segmented region.
Second, the symmetry between the ascending and descending
colon ( and ) is tested by checking whether the amount of
segmented voxels between the expected locations ofand
differs by less than 20%. The third condition tests the presence
of segmented colon within the expected location of the rectum.
The fourth condition checks whether the colon represented by

passes within an offset of 10%–25% from the boundary of
the CT volume that covers . The fifth condition tests whether
there are very large air-filled components that have not been seg-
mented. Finally, the sixth condition terminates the segmentation
process if 0.95.

IV. DETECTION OFPOLYP CANDIDATES

Polyp candidates are detected in the segmented colonby 1)
computing of 3-D geometric features characterizing polyps, 2)
segmenting of connected components corresponding to polyps,
and 3) clustering of these connected components to generate
polyp candidates.

A. Three–Dimensional Geometric Features Characterizing
Polyps

For characterizing polyps, 3-D geometric features called the
volumetric shape indexandcurvedness[27]–[29] are computed
at each voxel in . The volumetric shape index characterizes the
topological shape of the volume in the vicinity of a voxel [see
(8)], whereas the volumetric curvedness represents the size of
the polyp or the magnitude of the effective curvature [see (9)].
Both quantities are defined based on the notion of curvature.
Therefore, the definition and the computational method of cur-
vature are described briefly in the following.

Curvature is a local property attached to points on a surface.
Let denote the CT value at a point (voxel) .
Then an iso-surface at thelevel(CT value) of in a 3-D space

is given by

At each point , there exists a small neighborhoodof in
which can be expressed by a functionof and . By de-
noting with in this neighborhood, one can represent
the iso-surface as
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Let us denote the partial derivatives ofin terms of and
as follows:

(2)

(3)

With these notations, a vector parallel to the normal vector to
the surface is defined as

where denotes the outer product of two vectors, and de-
notes a norm. With these notations, thefirst fundamental forms
[30] are defined as

(4)

Also, thesecond fundamental forms[30] are defined as

(5)

Because we are interested in calculating the curvature infor-
mation at a voxel without explicitly generating an iso-sur-
face, we calculate the first and second fundamental forms di-
rectly from the isotropic volume as follows [31], [32]. By the
use of implicit differentiation and the chain rule, we obtain

1 0 1 0 . Substituting sim-
ilar expressions for , , , and into (3)–(5), we ob-
tain

(6)

Then theprincipal curvatures and [30], [33] are
defined as

(7)

where and are theGaussian curvatureandmean
curvature, respectively, defined at as follows:

Here, Perm is a permutation of , i.e.,
Perm .

By use of these principal curvatures, the volumetric shape
index and the volumetric curvedness at a voxel

are defined as the local shape index and curvedness of the
iso-surface that passes[27]:

(8)

(9)

where .
The space spanned by and is a polar-coordinate rep-

resentation of the space spanned by the principal curvatures
and . The shape index is a measure of the shape. Every dis-
tinct shape, except for the plane, corresponds to a unique value
of [27], [28]. These shapes are mapped on a unit circle in the

-space (see, Fig. 3). The unit circle contains shapes with
unit curvedness, and the rays through the origin contain iden-
tical shapes that differ in their curvedness, i.e., their sizes. For
example, as shown in Fig. 3, five well-known shape classes have
the following shape index values: cup (0.0), rut (0.25), saddle
(0.5), ridge (0.75), and cap (1.0). Diagrammatically, opposite
points on the unit circle, denoted by the end points of the dotted
lines, represent shapes that are each other’s “negative,” that is,
they have the same shape, but the opposite mold. Therefore, all
shapes can be mapped on the interval 0 1 . In Fig. 3,
the “negative” shapes are represented by light gray. A plane has
vanishing curvedness and an indeterminate shape index.

The most important advantage of the shape index in shape
analysis is that the transition from one shape to another oc-
curs continuously and, thus, the shape index can describe subtle
shape variations effectively. For example, 0.875 repre-
sents the “dome” shape, which is a transient shape from ridge

0.75 to cap 1.0 . Moreover, the volumetric shape
index introduced in this paper allows one to define the shape
index at every voxel in a volume without explicitly calculating
the iso-surface, because the definition of SI is based on the cur-
vatures that are computed locally at the voxel as shown in (6)
and (7). Therefore, the volumetric shape index captures the in-
tuitive notion of local shape of an iso-surface at a voxel.
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Fig. 3. Relationship of representative shapes to the shape index values.

The curvedness represents how gently curved the iso-surface
is. The dimension of the curvedness is that of the reciprocal
of length, and its range is . Curvedness is a “dual”
feature to the shape index in that the shape index measures
“which” shape the local neighborhood of a voxel has, whereas
the curvedness measures “how much” shape the neighborhood
includes. The curvedness also provides scale information: a
large negative value implies a very gentle change, whereas a
large positive value implies a very sharp knife-like edge.

In the 3-D volumetric data, generally, polyps appear as
bulbous, cap-like structures adhering to the colonic wall,
with small to medium curvedness, whereas folds appear as
elongated, ridge-like structures with large curvedness values.
The colonic walls appear as nearly flat, cup-like structures with
small curvedness values. Therefore, the shape index and the
curvedness can differentiate among polyps, folds, and colonic
walls effectively.

Fig. 4 demonstrates the potential of the shape index in dif-
ferentiating colonic structures. Fig. 4(a) and (d) shows axial CT
images that contain a polyp in the region indicated by a box.
Fig. 4(b) and (e) shows magnified views of the regions indi-
cated in Fig. 4(a) and (d). The polyps are indicated by arrows.
Fig. 4(c) and (f) represents 3-D endoscopic views of Fig. 4(b)

and (e), rendered by perspective volume rendering and by the
shape index. Voxels that have shape index values corresponding
to the cap class are rendered white, those corresponding to ridge
are rendered light gray, and those corresponding to the other
classes are rendered dark gray. As expected, most portions of the
polyp are rendered white, whereas folds and colonic walls are
rendered light gray and dark gray, respectively. With this ren-
dering scheme, the polyps, folds, and colonic wall are clearly
separated, and the polyps are easily distinguishable from other
structures.

B. Segmentation of Polyp Candidates

The characteristic values of the shape index for polyps are
used to segment the polyp candidates by use ofhysteresis thresh-
olding [34]. First, voxels that have shape index and curvedness
values between a predefined minimum and maximum are ex-
tracted asseed regions. We set the minimum and maximum
threshold values for the shape index to 0.9 and 1.0, respectively,
so that we can select the regions that are in the cap class. The
minimum and maximum threshold values for curvedness are set
so that the curvedness is within the range of targeted polyps, i.e.,
minimum of 0.08 mm (effective size of 12.5 mm) and max-
imum of 0.20 mm (effective size of 5.0 mm).
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Demonstration of the effect of the shape index in differentiating between polyps, folds, and lumen. (a) and (d): Axial images with polyps in theboxes.
(b) and (e) Polyps are indicated by arrows. (c) and (f) Three-dimensional endoluminal views of the polyps in (b) and (e) rendered by shape index. The shape index
clearly highlights the polyps (white), and differentiate them from folds (light gray) and colonic wall (dark gray).

Starting with seed regions, hysteresis thresholding based on
the shape index and curvedness is applied to the extracted colon

to obtain polyp candidates. The hysteresis thresholding ex-
tracts a set of spatially connected voxels to the seed regions
having shape index and curvedness values within the predefined
minimum and maximum values that are called agrowable re-
gion. This process is intended to extract a large connected com-
ponent that corresponds to the major portion of a polyp, be-
cause the peripheral region of a polyp does not always show a
perfect cap shape, but may show a dome-like shape. Therefore,
we use a relaxed minimum threshold value of 0.8 for the shape
index in order to include the skirts of the polyps connected to
the colonic walls or folds. Similarly, the peripheral region of a
polyp may have curvedness values that are smaller or larger than
those of the center region of a polyp. Therefore, the minimum
and maximum threshold values for curvedness are relaxed to
0.05 mm (effective size of 20 mm) and 0.25 mm(effective
size of 4 mm), respectively, for identification of clinically sig-
nificant polyps.

Table I shows the threshold values for the major parameters
used in the segmentation process.

C. Clustering of Polyp Candidates

The polyp candidates may contain multiple detections, at
different locations, of the same polyp, and may include a

TABLE I
THRESHOLD VALUES FOR THEMAJOR PARAMETERS USED IN THE

POLYP DETECTION PROCESS

large number of small bumpy structures due to image noise.
Multiple detections are merged into a single candidate by
combining the detections that are located within amerging
distance. We use a merging distance of approximately 10
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mm, because, generally, multiple detections may occur on
polyps larger than 10 mm.

Then, we employ afuzzy c-means algorithm[35] to remove
polyp candidates due to noise. Let denote the feature
vector of data point (i.e., a voxel in a polyp candidate).
The fuzzy -means algorithm groups the data pointswith
similar into a single cluster for some . The similarity
between two data points and is defined by the similarity
measure , where represents the
Euclidean distance. For our purpose, the main advantage of
the fuzzy clustering is that it defines a membership function

0 1 for each data point and each cluster . If the
value of is large, it is likely that belongs to cluster .

To start the fuzzy clustering, we use the center of coordinates
for each polyp candidate, obtained from the segmentation step in
the previous section, as the initial estimate of the cluster centers.
Then, for each point, we initialize the membership function so
that 1 if belongs to theth candidate and 0
otherwise. The feature values in each are normalized to the
range 0 1 . The fuzzy -means clustering takes of all as
input, and moves the cluster centers to the optimal location by
iteratively updating the membership functions and the location
of the cluster centers. This optimization is based on minimizing
an objective function that represents the distance from any
given data point to a cluster center weighted by the value of the
membership function for the data point

where represents the center coordinate of cluster, and is
the number of polyp candidates. At each iteration, a new cluster
center

is calculated and a new membership function

is obtained for 1 . Then is replaced with ,
and the iteration continues. The iteration terminates when the
difference between the current and the previous values of the
objective function becomes less than a predefined threshold
value.

The data points with the value of the membership func-
tion higher than a threshold value, , for some
, are kept to yield the final clusters. By using the relatively

high threshold value of 0.8, the fuzzy clustering process keeps
the candidates due to noise as a small, isolated cluster, because
they tend to contain voxels that have distinctly different fea-
ture values from those of their surrounding voxels. These voxels

Fig. 5. The calculation of GC and DGC features at operating pointp is based
on considering the directions (angle (p)) of the gradient vectors~g over a
distance range[R ;R ] in selected directions~d as described in the text.

have low values of the membership function for the candidates
and, thus, the above thresholding operation generates small clus-
ters. Thresholding with a minimum volume of approximately 35
mm is applied to individual clusters for removal of these small
clusters. This minimum volume is equivalent to the volume of
a 4-mm polyp, which is small enough to keep the clinically sig-
nificant polyps that are 5 mm or larger.

Table I summarizes the threshold values for the major param-
eters used in the clustering process.

V. VOLUMETRIC FEATURES FORREDUCING FALSE POSITIVES

Our previous polyp detection scheme [17] discriminated be-
tween polyps and FP findings by using the mean value of four
features: the shape index, curvedness, CT value, and magnitude
of the gradient of CT values. In the improved scheme, we intro-
duce two new features that are based upon the concept ofgra-
dient concentration(GC) [36]. The application of this method
for polyp detection is described in more detail in [26]. In short,
the GC feature at a pointcharacterizes the overall direction of
the gradient vectors around. It is defined by

(10)

(11)

where is the number of the symmetrically 3-D-oriented di-
rection vectors originating from . The angle is calcu-
lated between and , where is the gradient vector located
at distance from in direction (Fig. 5).

The value of the GC feature is maximal at the center
of a Gaussian sphere. However, polyps often appear to be
hemispherical objects adhering to the colonic wall rather than
spherical objects. Therefore, we have developed a modified GC
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(a) (b) (c)

Fig. 6. (a) Phantom with a complete Gaussian sphere and a Gaussian hemisphere. (b) Cut-plane view of the gradient concentration (GC) response of the phantom
shown in (a). (c) Cut-plane view of the directional gradient concentration (DGC) response of the phantom shown in (a). In (b) and (c), regions with highresponse
are rendered white while those of low response are rendered gray.

feature, called thedirectional gradient concentration(DGC),
which is computed similarly to GC, as follows:

otherwise.

Here, and are computed in opposite directions

and . Phantom studies confirm that the DGC feature
yields a higher response for hemispherical polyp-like objects
than for complete spheres, whereas the opposite is true for the
conventional GC feature (Fig. 6).

The six features (shape index, curvedness, CT value, gradient,
GC, and DGC) were characterized by use of nine statistics. Let

represent a polyp candidate after fuzzy clustering, and let
represent the value of feature at voxel . Let de-

note the number of voxels in candidate. The following nine
statistics were used to characterizein :

mean

var

skew

kurt

entropy Prob Prob

contrast

In the last equation, represent the voxels with the highest
value(s) of within .

VI. DISCRIMINANT ANALYSIS

In the final stage of our CAD scheme, discriminant analysis
based on 3-D volumetric feature statistics (FS) is carried out
for reducing FPs among the polyp candidates. For this purpose,
we employ linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA) [37].

Let denote the number of FSs used in the discriminant anal-
ysis, and let denote an -dimensional
( -D) feature vector of the polyp candidate, in which the com-
ponent represents the-th FS value of the polyp candidate.
Given a training set with known classes, LDA or QDA generates
a decision boundarythat optimally partitions the feature space
spanned by the features into two classes, i.e., a true-positive
(TP) class denoted by and a FP class denoted by . To
this end, adiscriminant function is generated,
which projects the -D feature space to a scalardecision vari-
ablespace. The decision boundary is given by 0.

LDA uses the simplest type of discriminant function, called
a linear discriminant function, defined by

(12)

where is an -D weight vector, is the transpose of , and
is a constant vector. Given a training set of candidates that are

known to belong to either or , is given by

where and are the mean feature vec-
tors of these samples and covariance matrices of the samples in
the and classes, respectively. Because of the linearity
of in terms of , the decision boundary for LDA forms
a hyperplane in the feature space. In QDA, on the other hand,
is a quadratic discriminant function defined by

and, thus, the decision boundary forms a hyperquadratic surface.
In the following, we will denote both types of discriminant func-
tions simply by .
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Geometrically, the discriminant function is interpreted
as proportional to the signed distance fromto the decision
boundary. Generally, the larger the value of , the more
likely it is that is a polyp. In other words, is propor-
tional to the ranked ordering of the likelihood thatis a polyp.
Therefore, we classify the polyp candidates into classes
and by partitioning the feature space through thresholding
of the decision variable as follows:

(13)

Those candidates that are classified in the polyp class are
reported as the final detected polyps by the CAD scheme.

VII. PERFORMANCEEVALUATION

A. Database of Polyps in CTC

To evaluate the performance of our CAD scheme, we col-
lected 43 CTC cases retrospectively at the University of Chicago
Hospitals. These cases were obtained by use of a helical CT
scanner (GE CTi 9800, General Electric Medical Systems, Mil-
waukee WI) with collimation of 5 mm, a pitch of 1.5–1.7, and re-
construction intervals of 1.5–2.5 mm. The current was 100 mA
with 120 kVp. A 180 linear interpolation and the standard re-
construction algorithm were used. The colon was cleansed with
a standard precolonoscopy cleansing method and insufflated
with room air when the CT scanning was performed. Each pa-
tient was scanned in both supine and prone positions.

Eleven of the cases contained a total of 12 colonoscopy-
proven polyps of at least 5 mm in diameter. This size is the
lower limit of the size range for the polyps that are considered
to be clinically significant [3]. Nine polyps measured between
5 and 10 mm; the other three measured 12, 25, and 30 mm.
Two experienced radiologists examined the locations of these
polyps in the CTC data sets. As a result, all of the polyps were
confirmed on the CT images, but three polyps were visible only
in either the supine or prone view, because they were located in
a collapsed region or buried under the fluid in the other view.
Therefore, we had a total of 21 visible polyps. Because two of
these visible polyps were in a single data set, we had 20 CTC
data sets, among 86 data sets, with at least one visible polyp.

Each CTC data set covered the entire region of the abdomen,
from diaphragm to rectum, and consisted of 150–300 CT
images with a matrix size of 512512. After the linear
interpolation along the axial direction, the dimension of
the resulting isotropic volumes contained between 500 and
700 voxels, and the physical resolution of these volumes was
0.5–0.75 mm/voxel.

B. Evaluation of the Detection of Polyp Candidates

To determine the TPs and FPs in the computerized detections,
we determined the center coordinates of the TP polyps in each
data set by the two radiologists. A CAD detection was consid-
ered a TP if the distance between the detected polyp and the
center of a true polyp was at most 15 mm. All other findings
were considered FPs.

C. Evaluation of Discriminant Analysis

We evaluated the performance of the LDA and QDA in dif-
ferentiating polyps from FPs by regarding the output of the dis-
criminant function as a decision variable, and subjecting the
values of the discriminant function for each candidate
to receiver operating characteristic (ROC) analysis [38]. To es-
timate the unbiased performance, we trained and tested the clas-
sifiers for LDA and QDA by around-robin(or leave-one-out)
method [39]. In this method, each candidateis removed, in
turn, from the set of all polyp candidates . Here,

represents the number of polyp candidates after the fuzzy
clustering. The classifier is trained by the remaining candidates

, and a discriminant function is generated and
evaluated on the removed candidate. The set
is subjected to the LABROC4 program [40], and the area under
the ROC curve is calculated. Generally, a larger value
indicates a higher performance in the discrimination task. The
advantage of this method is that the training and testing of can-
didates can be completely separated; therefore, the resulting dis-
crimination criterion is least biased to the cases in the database.
Another advantage is that almost all of the polyp candidates are
available in this method.

D. Evaluation of Overall Performance

We obtained the final detected polyps by determining the
threshold value in (13). Correspondingly, we generated a free-
response ROC (FROC) curve that indicates the overall perfor-
mance by using as the sweeping variable. For this purpose,
we first generated the discriminant function by use of the
entire set of polyp candidates . Then FROC curves
were generated by the following two methods: 1) a FROC curve
based on cases (patients) and 2) a FROC curve based on the vol-
umetric data sets. In both methods, the CAD scheme processed
independently the supine and prone volumetric data sets gener-
ated from a single patient to yield polyp candidates. In 1), a case
with polyps was regarded as being correctly recognized as ab-
normal if a polyp in the case was detected in either the supine or
the prone data set in the case. In 2), supine and prone data sets
in a case were considered as different data sets, and each data
set was considered to be correctly recognized as abnormal if a
polyp observed in the data set was detected.

VIII. R ESULTS

A. Performance of the Detection of Polyp Candidates

Table I summarizes the major parameter settings that were
used in the polyp segmentation process (Section IV-B) and the
clustering process (Section IV-C). As a result of the polyp seg-
mentation process, all visible polyps were detected, except for
one polyp in the supine view of a patient. However, this missed
polyp was detected in the prone view of the same patient. There-
fore, all the polyps were detected in either the supine or prone
data set of a patient. The detection process produced 3162 FPs,
yielding approximately 37 FPs/data set, or 74 FPs/case. This
number was reduced after the clustering process, which yielded
1096 FPs, i.e., approximately 13 FPs/data set, or 26 FPs/case.
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TABLE II
SELECTED RESULTS OFROC ANALYSIS. A VALUES FOR SELECTED

COMBINATIONS OF FEATURE STATISTICS

Selected results of ROC analysis. values for selected combina-
tions of feature statistics are shown below. and indi-
cate the values obtained by LDA and QDA with round-robin test,
respectively. Here, and represent the mean and variance statistics,
respectively. The acronyms for the features are: CTCT value, GR

gradient magnitude, SI shape index, CV curvedness, DGC
directional gradient concentration. For example, indicates the
mean of shape index values whereas indicates the variance of
ct values.

B. Performance of Discriminant Analysis

Table II shows the results of the round-robin test for several
FS combinations. Among various combinations of the FSs, this
table lists only those combinations that show a high performance
in discriminating polyps from FPs. The values obtained by
LDA and QDA are shown in the first and the second

columns, respectively. The last row shows the FS com-
bination used in our CAD scheme reported previously [17]. As
demonstrated in the other rows, use of a new feature such as the
mean of the DGC, and the new statistics of the previous features
such as the variance of CT values, are shown to increase the
values of both LDA and QDA.

C. Overall Performance

To evaluate the overall performance of our CAD scheme,
we generated FROC curves in the manner described in Sec-
tion VII-D. Among several combinations of FSs, the best result
was obtained by applying the QDA to the feature space spanned
by the FSs in the first row of Table II. The decision boundary
generated by QDA is shown by a black curve in Fig. 7(a)–(c). As
shown in this figure, the decision boundary separates TPs (black
squares) from FPs (gray dots) well. Two FROC curves were gen-
erated [Fig. 7(d)]. The FROC curve showing the performance
based on data sets is represented by a dotted curve, whereas that
based on cases is represented by a solid curve. These FROC
curves indicate that the CAD scheme yielded 95% sensitivity
with 1.2 FPs/data set, or 100% sensitivity with 2.0 FPs/case.

IX. DISCUSSION

In this paper, we have presented a CAD scheme for the detec-
tion of polyps in CTC. The high sensitivity and low FP rate in
our preliminary results show the promise of computerized de-
tection methods as a potential aid for interpreting CTC exami-
nations.

In Section II, we described a process of generating an
isotropic volume that is used in the 3-D processing in the
subsequent steps. This process also serves to eliminate the
differences in the CT parameter settings—in particular, the
reconstruction intervals—among different data sets. In our
study, no significant visual difference, or difference in detection

results, was observed. It should be noted that we used CT
parameter settings that are currently used as a standard protocol
for the CTC examinations [3]. This protocol is widely accepted
because it allows one to acquire CTC images in which the vis-
ibility and conspicuity of clinically significant sizes of polyps
are high regardless of the CT scanner used for the acquisition
process [41]. However, the visibility and conspicuity of polyps
may depend largely on the image acquisition parameters [16],
[42]; thus, our CAD scheme may yield a different performance
if a nonstandard CT parameter setting is used. Further work is
needed for clarifying the dependence of the performance of the
CAD scheme on CTC parameter settings and for developing
an optimization method of the CAD scheme, such as the one
described in [43], for different parameter settings.

Reliable automated segmentation of the colonic walls is a
necessary first step for successful automated polyp detection.
Our knowledge-guided technique presented in Section III seg-
ments the colonic walls at a thickness of 3–4 mm and excludes
most or all of the extra-colonic components from the segmented
colon. These characteristics of the technique yield a high sensi-
tivity and low FP rate in the detection of polyps. However, an
evaluation of our colon segmentation method indicates that the
FP rate could still be reduced by approximately 10% if all of
the extra-colonic components remaining after the knowledge-
guided colon segmentation could be removed [26].

Our detection method based on the shape index (Section IV)
assumes that polyps appear as a cap-like shape, i.e., as polypoid
lesions. Recently, clinical researchers are investigating flat le-
sions that may have an incidence ranging between 8% and 30%,
and may have significantly different biologic features than poly-
poid lesions [44], [45]. These flat lesions have the potential to
transform to high-grade dysplasia quickly, and to invade the sub-
mucosa rapidly. They tend to be smaller than the typical poly-
poid adenomas and therefore can be difficult to detect by con-
ventional colonoscopy. Radiologists have found that detecting
flat regions is more difficult in CTC than in colonoscopy [46].
Because of the difficulty in finding the flat lesions in CTC and
the uncertainty of their clinical importance, we did not specif-
ically design our method to detect these lesions and, thus, our
CAD may not be able to detect them effectively. Detection of
flat lesions remains for future investigation when clinical studies
confirm the importance of the detection of these lesions for
screening of colon cancers.

At the beginning of the clustering process, polyp candidates
within a predefined distance are merged to generate a single
detection from a polyp. However, we observed that multiple
detections may still occur from polyps larger than 20 mm. In
this study, the detection closest to the true polyp location was
used as the detected polyp, and the others were considered as
FPs. Simply relaxing the tolerance distance may merge a large
number of FPs to TPs and, thus, may produce incorrect results
in terms of sensitivity. This indicates that an additional method
needs to be developed for reliable detection of a large polyp. The
current hysteresis thresholding scheme for segmenting polyps is
based on shape index and curvedness features alone. Therefore,
a part of the local region that is more appropriate in identifying
polyps with the other features could be excluded, which may in-
crease the FP rate. It is, thus, necessary to investigate whether
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Fig. 7. (a)–(c) Distributions of the values of the three feature statistics for the polyp candidates obtained by our CAD scheme. TPs are represented byblack
square boxes and FPs are represented by gray dots. Decision boundaries generated by QDA are shown by solid curves. Dotted curves show the iso-surfacesof
the discrimination function generated by QDA. (d) FROC curves generated from the result of QDA shown in (a)–(c). The solid curve represents the detection
performance of the CAD scheme based on cases, whereas the dotted curve shows the performance based on data sets.

the polyp segmentation scheme needs to be modified to include
optimal regions for each feature.

Other classifiers, such as neural networks, could be used
to improve the FP rate of the polyp discrimination. However,
proper use of neural networks requires large independent and
representative sets of training and testing data. The size of our
polyp database should therefore be increased before such an
analysis is attempted.

The current implementation of the CAD scheme has not been
optimized for speed and efficiency. Using a PC workstation
(Marquis K120-SR, ASL Inc., Newark CA) with dual proces-

sors (Athlon MP 1.2 GHz, AMD, Sunnyvale CA), the whole
process of detecting polyps in a data set takes approximately 10
min depending on the size of the volume.

We used only a small number of polyps in the evaluation of
the overall performance of our CAD scheme and, thus, we are
limited in making generalizations about the detection accuracy
of our scheme. The FROC curves were generated by a consis-
tency test. No evaluation based on an independent database was
performed. As indicated in Fig. 7(a)–(c), the TPs were quite
concentrated in a small region in the feature space, which indi-
cates that the feature statistics characterize the true polyps well.
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Although our method appears promising, extension to a larger
database will be needed for confirmation of the usefulness of
the CAD scheme for screening.

X. CONCLUSION

We have developed an improved CAD scheme for the detec-
tion of polyps in CTC. Based on clinical CTC cases, our CAD
scheme yielded a high performance of 100% sensitivity with 2.0
FPs/patient. If this result can be translated into a larger number
of cases, radiologists will need to interpret only a few regions
indicated by the CAD scheme in a CTC examination. Such a
“second opinion” offered by a CAD scheme will substantially
reduce radiologists’ interpretation time and improve their per-
formance in the detection of colonic polyps in CTC. Therefore,
our CAD scheme has the potential of making CTC a viable op-
tion for screening of large patient populations, resulting in early
detection of colon cancers, and leading to reduced mortality due
to colon cancer.
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