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Three-Dimensional Computer-Aided Diagnosis
Scheme for Detection of Colonic Polyps

Hiroyuki Yoshida* Member, IEEEand Janne N&ppi

Abstract—We have developed a three-dimensional (3-D) com- a large number of images in a time-effective fashion, and for
puter-aided diagnosis scheme for automated detection of colonic detecting polyps and masses with high accuracy. Currently,
polyps in computed tomography (CT) colonographic data sets, and yq\yever, the interpretation of an entire CTC examination is

assessed its performance based on colonoscopy as the gold stan: . . o
dard. Inthis scheme, a thick region encompassing the entire colonic 'hme-consummg [3], [6]. A typical CTC examination produces

wall is extracted from an isotropic volume reconstructed from the 150-350 axial CT images each for the supine and prone
CT images in CT colonography. Polyp candidates are detected by imaging data sets, yielding a total of 300—700 images/patient.
first computing of 3-D geometric features that characterize polyps, Despite the recent advances in image-display techniques [7],

folds, and colonic walls at each voxel in the extracted colon, and gy, gjes show that the case interpretation time is still between 15
then segmenting of connected components corresponding to suspi-

cious regions by hysteresis thresholding based on these geometricfijd 40 min even when reading is done by experts in abdominal

features. We apply fuzzy clustering to these connected componentsimaging [3], [6]. The interpretation time for an entire CTC
to obtain the polyp candidates. False-positive (FP) detections are examination should be reduced substantially before CTC can

then reduced by computation of several 3-D volumetric features pe translated from the research area to routine clinical practice,
characterizing the internal structures of the polyp candidates, fol- and especially to the screening setting [8]. In addition, the di-

lowed by the application of discriminant analysis to the feature ti f fCTC " . det ined
space generated by these volumetric features. The locations of the@9NOSUC performance o currently remains undaetermine

polyps detected by our computerized method were compared to a@nd prone to perceptual errors [3], [9]. Several studies have
the gold standard of conventional colonoscopy. The performance shown a high sensitivity of 80%—-100% and a specificity of
was evaluated based on 43 clinical cases, including 12 polyps de-80%-90% in the detection of polyps [10], [11], whereas others
termined by colonoscopy. Our computerized scheme was shown to 4y reported a relatively low sensitivity of 40%—-70% and a
_have the potential to detect'p_o!yps in CT colonography with a clin- S ifici f 70%—80% [12]. [13]. It has b ted that
ically acceptable high sensitivity and a low FP rate. pec 'C'.w 0 0—oUv0 [ ] _[ 1 as een suggeste a
these differences in sensitivity and specificity for CTC are
partly based on the undefined learning curve for the interpreta-
tion of CTC [14]. Moreover, the visibility and conspicuity of
polyps and, thus, the accuracy of polyp detection, may depend
. INTRODUCTION on the image acquisition parameters and display methods, both

OLON cancer is the second leading cause of canc®which are still under investigation [15], [16]. These factors

deaths in the United States, with approximately 60 odpcrease the perceptual error even for experienced observers
deaths/year [1]. Studies show that early detection and remolddt
of colonic polyps can reduce the risk of colon cancer and, thus,Computer-aided detection (CAD) of polyps is attractive be-
result in a decrease in the mortality rate from colorectal canasause it has the potential to overcome the above difficulties with
[2]. Computed tomographic colonograp{TC) or virtual CTC [17]. A CAD scheme automatically detects polyps and
colonoscopyis a technique for detecting colorectal neoplasnmasses in CTC images, and it provides the locations of suspi-
by using a computed tomography (CT) scan of the cleanseidus polyps to radiologists. The “second opinion” offered by a
and air-distended colon [2]. Current CT technology allows @AD scheme has the potential to reduce radiologists’ interpre-
single image set of the colon to be acquired in 20-30 s, whitdtion time and to increase radiologists’ diagnostic performance
translates into an easier, more comfortable examination tharthe detection of polyps. Reduction of interpretation time can
is available with other screening tests. Therefore, CTC hhe achieved if radiologists focus on the small number of re-
been advocated as a promising technique for providing magens indicated by the CAD scheme. Radiologists can quickly
screening for colorectal carcinoma [3]-[5]. survey a large portion of the colon that is likely to be normal.

For CTC to be a clinically practical means of screening fokn improvement in the detection performance can be achieved
colon cancers, the technique must be feasible for interpretingcause CAD can potentially reduce radiologists’ perceptual er-
rors.
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Axial CT images

from air to tissue. These schemes showed a potential to de!
polyps in CTC because they provided a high detection perfc [_

mance when they were applied to simulated polyps. Howev ¥
these existing schemes suffered from either a low sensitivity segmentation of the entire colon
a high false-positive (FP) rate when they were applied to clinic *

cases. When these schemes are set to yield a clinically acc
able sensitivity of 85%—-100%, the number of FPs increases Detection of polyp candidates
the range of 20 to more than 100/case [21], [23]. When the | Extraction of 3-D gc:-::rn{.-tric features
rate is set to a value of as low as 3.5, the sensitivity decrease characteristic of polyps
50%-70% [19].

In this paper, we present a high-performance, fully aut
mated 3-D CAD scheme based on our previously reported C#

segmentation of polyp candidates

scheme [17]. Similar to existing CAD schemes, our schen ¥

extracts the colon in which the polyps are detected. Howev Clustering of polyp candidates
our scheme is unique in that it extracts a thick region that e

compasses the entire colonic wall (Section Ill). Other metho L4

attempt to extract only the surface of the colon [18], [24]. Ot Heduction of false positives
approach has an advantage over the surface-generation me . 3

in that it can extract entire polyps, including their interne Extraction of 3-D volumetric features
structure that can be used for the reduction of FPs. The s ¥
face.—generation.method has a risk of losing a part of the poly Discriminant analysis
particularly the internal structure and, thus, may decrease -

detection performance. This method of extracting colonic wal ¥

has been improved substantially over our previous method [1
so that we are able to extract a colonic wall alone and remc [
the small bowel and stomach adhering to the colonic wall bascu

on a self-adjusting VOIume'_grOWing technique (Sec_tion III'B)'Fig. 1. Schematic diagram of the 3-D CAD scheme for the detection of polyps
We also use 3-D geometric features for the detection of polyjpscTC.

(Section IV). These geometric features are employed specifi-

cally for differentiating polyps frqm folds an d. ffom the .Cc.)l.on'cextract the colon by extracting a set of thick regions that encom-
wall and, thus, they can be effective in maximizing sensitivity. Ii

: . : . ass the entire colonic wall (Section IIl). Polyp candidates are
this paper, in particular, we develop a novel 3-D volumetric fea- : ) : :
L : ) : etected (Section IV) first by computation of two 3-D geometric
ture, directional gradient concentration, that characterizes the . )
. eatures characterizing polyps, folds, and colonic walls at each
internal structures of polyps, folds, and stool, and we use this .
. . ; voxel of the segmented colon, and then segmentation of con-
feature for reducing FPs (Section V). Unlike other schemes that . ; .
: nected components by hysteresis thresholding using these geo-
tend to use features independently to remove FPs, we com-. . S .
: . . . metric features. Fuzzy clustering is applied to these segmented
bine this and other, previously-reported volumetric features by a L .
X . o . components for obtaining the polyp candidates. FPs are then re-
linear and a nonlinear classifier to reduce FPs substantially (Sec-

tion VI). In this paper, in particular, we used a classifier basg8 ced by computation of 3-D volumetric features that charac-

on quadratic discriminant analysis to achieve a high general

Detected polyps

¥:ize the internal structures of the polyp candidates (Section V).
in the detection of polyps. e final detected polyps are obtained by the application of dis-

The reminder of this paper is organized as follows. Sectionqpmmam analysis to the feature space generated by the volu-

provides a brief overview of our 3-D CAD scheme. Section ”rlnetnc featu'res for these polyp candidates (Section V). .
The locations of the polyps detected by our computerized

presents an improved colon segmentation method. Section |V :
. . . scheme are compared to those of conventional colonoscopy that
describes a method for the detection of polyp candidates base
. ; . isused as the gold standard. All of these processes are performed
on geometric features. Section V introduces several volumetric . . . i
: ) o : altomatically, without human intervention.
features, which are combined by a classifier in Section VI t0
reduce FPs. Section VIl presents methods for the evaluation of

the performance of the CAD scheme. Sections VIII-X present !ll: KNOWLEDGE-GUIDED SEGMENTATION OF COLON
the results, discussion, and conclusion. The isotropic volume generated by linear interpolation may
contain large amounts of anatomic structures other than the
colon. To limit the search space to the polyps within the colon,
and to avoid generating FPs due to the extra-colonic structures,
A diagram of the detection scheme is shown in Fig. 1. Firdhe entire colon is segmented by using a fully automated
for performing 3-D analysis of the colon and polyps, a 3-Rnowledge-guided technique. Specifically, we extract a set
volume, isotropic in the, y, andz directions, is generated fromof thick regions that encompasses the entire colonic wall.
the axial CT imagesina CTC data set, by linear interpolation b&herefore, the extracted colonic wall contains not only the
tween the corresponding pixels on the adjacent slices. Then sugface, but also the complete inner structure of the polyps.

Il. OVERVIEW OF THE CAD SCHEME
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®

Fig. 2. lllustration of colon segmentation. (a) Original CT volume, and segmented (b) outer air (body shown), (c) bones, and (d) lung bases.téz) 8#gmen
based on ABE. Parts of the small bowel (arrow) adhere to the colon. (f) Final segmented colon based on CBA. The parts of the small bowel adherimg to the col
in (e) are removed, and a region encompassing the colon alone is extracted.

The process of colon segmentation consists of two majoases, respectively. Lef-r(«,/3) denote the operation of
steps: l)anatomy-based extractiqlABE) and 2)colon-based thresholding the CT value rande, 3]. First, we search the
analysis(CBA) (Fig. 2). The ABE segments the colonic wéll global histogram of the original volumié for local maxima in
with high sensitivity, but the resulting segmentation, denotemtedetermined ranges in order to find the characteristic peaks
by C*, could contain redundant extra-colonic componentthat correspond to CT values of &k 4 ), fat (L), and muscle
such as small bowel or stomach.Therefore, in the second steh,, ). Details of this procedure are described in [25]. Next,
the CBA produces a segmentation, denoted’by that is used outer air, R,, is segmented byleq (—oo, (La + Lr)/2)),
for removing the extra-colonic components fraif. The final  followed by a series of morphological operations and con-
segmentatioi’ is a digital approximation of the actual colonicnected component analysis. The bone redigris segmented
wall. Additional details of the technique are given elsewhefeom V\ R, by Ter((2/3)Lys + 100 o). To segment lung
[25], [26]. basesR;, we perform a local histogram analysis of the top

In the following, the segmentation of a regiahis denoted region of V\ R,UR,). The lung bases are segmented by
pyA_ to distinguish betyveen the actual region (e.g., colon) ag%T ((La + Ly)/2, L1, + 150),where L; is the lung peak
its discrete segmentation. The complement of a subset (regied) yaiue of the local lung histogram (see [25]). The resulting

AlinsetB is denoted by3\ A. The union of two sets (regions) connected components that are close to the estimated location
A andB is denoted byd U B, and the intersection is denotedys ihe |eft and right lung bases are removed.

by AN B. The segmentation d&,,, R,;, andR; is performed in reduced
_ resolution to accelerate the colon segmentation process. To en-
A. Anatomy-Based Extraction sure that the boundary zone of these regions is also removed,

The ABE is similar to the anatomy-oriented colon sedgh® Segmentation&,, R, and R, are expanded by 2-8 mm by
mentation scheme that we presented earlier [25]. The colB€ Of 3-D morphological dilation. o
is segmented by application of the following methods to the The colon is segmented from the remaining volue=
3-D isotropic volume: Gaussian smoothing, histogram andl-\ (2. U Ry U Rz) by intersecting of the regions obtained by
ysis, thresholding, edge detection, region-growing, connect&gdy (L s —800, L s —50) andT g r(Lar — 950, 00), wherely; g
component analysis, and mathematical morphology. denotes thresholding of the gradient magnitude.2et {P;}

Let V, R,, R,, and R; denote the original CT volume, be the set of the resulting connected components, ar®Jet
outer air (the region surrounding the body), bones, and ludgnote the number of voxels in a componé&nit The largest
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component;, € P represents the principal region of the colon. The volume-growing step may need to be continued if the
Additional components are included in the colon segmentaticomplete colon is not segmented (the conditions are described

according to below). Letr; denote the region that has been segmented by the
. . most recent volume-growing step. The updated CBA segmen-
Ct =PrLU{P;|P;| 20.04PL|, j#L,P;eP}. tation is the region’ U C~, wherer’ represents; expanded

to coverCt in the desired thickness within the local neighbor-
Iﬁ'ood ofr;. Then, ifC obtained from (1) is still considered in-
complete, the volume-growing process is continued by choice
of a seed point from within the largest nonsegmented air-filled

The setC+ denotes the region segmented by ABE. The thic
ness of the segmented colonic wall is adjusted to 3—4 mm.

B. Colon-Based Analysis

region. )
The segmentation provided by the ABE is of the form Six conditions are used for testing wheti@rmrepresents a
- , complete colon. First, the amount of voxels removed G
CT=(C\UE, is limited accordingt@'s = (|JC*|—|C|)/|C*| > 0.50, where

. . . |C| denotes the number of voxels within the segmented region.
whereC represents the actual colonic walls C'is the portion : .
: Second, the symmetry between the ascending and descending
of the colonic wall not segmented by the ABE, aBdrepre- : .
: . colon (C, andCy) is tested by checking whether the amount of
sents extra-colonic components. For polyp detection, we ma

assume that = 0 (empty set), because, according to our obS-. gmented voxels between the expected locatiofg ehdC,

0 ) "
servations, the portions of the colon not segmented by the A% ers by less than 20%. The third condition tests the presence

. o . ._of segmented colon within the expected location of the rectum.
reside within completely collapsed regions that are not of di he fourth condition checks whether the colon represented b
nostic quality. On the other hand, up to 20% of the FP polyp fir?% P y

. L . passes within an offset of 10%-25% from the boundary of
ings of our original CAD scheme were found to originate fror‘ﬂm CT volume that covels+. The fifth condition tests whether

the extra-colonic components' [17]. Therefore, to minimize there are very large air-filled components that have not been seg-

) ; ) I N
£, we develope_d the CBA techmqug, which essentially implg ented. Finally, the sixth condition terminates the segmentation
ments a self-adjusting volume-growing scheme to segment the .

air within the colonic lumen. Le€— denote the segmentationprocesS tCa > 0.95.
produced by the CBA. The final segmentation of the colon is
obtained by intersection of the two segmentati6is (ABE)
andC~ (CBA) Polyp candidates are detected in the segmented ¢olpnl)
U - computing of 3-D geometric features characterizing polyps, 2)
C=CtnC. @) segmenting of connected components corresponding to polyps,

. . . and 3) clustering of these connected components to generate
The seed points of the volume-growing step in CBA are de- ) g P 9

tected automatically fron€'*. The first seed is chosen from olyp candidates.

within the rectum, because this part of the colon can be Iocat/gd

most reliably. First, a volume of interedl; is extracted from ~_°

the 4-cm bottom region of the CT volume that COVers. Let
e = VRNCt. ThenR}, dividesVz \ R¢., into two discon- For characterizing polyps, 3-D geometric features called the

nected components: the colonic lumen and the region outsigdumetric shape indeandcurvednes§27]-[29] are computed

the colon. The rectum is identified as the second largest c@t-each voxel iC'. The volumetric shape index characterizes the

nected component withiliz\ Re. . topological shape of the volume in the vicinity of a voxel [see
The method above assumes that the rectum is located in ¢8H, whereas the volumetric curvedness represents the size of

bottom 4 cm of the CT volume that covers the ABE segmentthe polyp or the magnitude of the effective curvature [see (9)].

tion C*. If this is not the case, there are two options. First, tHdoth quantities are defined based on the notion of curvature.

rectum can be located above this region. The only such cadé&erefore, the definition and the computational method of cur-

we have encountered involve a collapsed rectum, where onlyaiure are described briefly in the following.

small isolated region of the rectum is segmented by the methodCurvature is a local property attached to points on a surface.

In this case, the volume-growing step continues as descritegt 2.(p) denote the CT value at a point (voxel)= (z,, 2).

below. In the second case, the rectum is located below the 4-ERen an iso-surfac® at thelevel(CT value) ofa in a 3-D space

region, and in this case the rectum is collapsed completely®t is given by

is not contained within the original CT volunié. This situa-

tion may produce multiple disconnected fragments of colon, if P={p=(2,y.2) € R% h(p) =a}.

these are connected in the region that is excluded froriio

detect such cases, we check the bottom 20% region of the B8Teach pointp, there exists a small neighborhoédof p in

volume covering’t after the CBA segmentation is completedyhich » can be expressed by a functignof = andy. By de-

but before the final segmentatio€, is established. The con- noting(x, %) with (u, v) in this neighborhood, one can represent

nected components that do not extend above this 20% regiba iso-surface” as

are included irCt, if they cover a region of at least 1000 rim

and are connected to the bottom CT slice of the region. P(u,v) = {(u,v) € R%; h(u, v, ¢p(u,v)) = a}.

IV. DETECTION OFPOLYP CANDIDATES

Three—Dimensional Geometric Features Characterizing
Polyps
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Let us denote the partial derivatives Bfin terms ofu andv  where K(p) and H(p) are theGaussian curvatur@and mean

as follows: curvature respectively, defined at as follows:
P, _9P(u,v) pUEM @2 .. LN-M?
Ju Ov K=fea-m
P _9*P(u,v) p = 9% P(u,v) 1 N
T 0t T dudv ~e > {hi (hyihan — B3)
P :82P(u, U) (3) (¢,5,k)=Perm(zx,y,2)
v o%v ’ +2hjhk(hikhij — ]L”hjk)}
EN —-2FM+GL
With these notations, a vector parallel to the normal vector £ = 2EG — F?)
the surface is defined as 1
_W Z {—h?(h]’j +hkk)+2hjhkhjk}.
Q = Pu X PU (¢,4,k)=Perm(z,y,z)
[P x P

Here, Perm,y,z) is a permutation of(z,y,z), i.e.,
Perm(z,y, z) = {(z,y,2), (v, 2,2), (z,2,9) }.

By use of these principal curvatures, the volumetric shape
index SI(p) and the volumetric curvedneg®V (p) at a voxel
p are defined as the local shape index and curvedness of the
E=p,-P,, F=P,-P, G=P, P, (4) iso-surface that passeq27]:

wherex denotes the outer product of two vectors, dnd| de-
notes a norm. With these notations, st fundamental forms
[30] are defined as

Also, thesecond fundamental fornfi30] are defined as
SI(p) 1 = arctan -t (p) + rialp) (8)
=Pw-Q. M=P,-Q N=P,-Q (5 ’ 1(2) = ralr)
un ’ = L un " W, = Lo "W 2 2
CV(p) = ’il(p) + ’iQ(p) (9)

Because we are interested in calculating the curvature infor-
mation at a voxep without explicitly generating an iso-sur-

face, we calculate the first and second fundamental forms Wh—ﬁ:g? ;:; anned % andCV is a polar-coordinate rep-
rectly from the isotropic volume as follows [31], [32]. By the b P P P

use of implicit differentiation and the chain rule, we obt&in= resentation of the space ;panned by the principal curvamres_

o o - . andxs. The shape index is a measure of the shape. Every dis-
OP/0u = (1,0,09/0u) = (1,0, ~ha/h-). Substituting sim- tinct shape, except for the plane, corresponds to a unique value
llar expressions for%,, Puu, Puy, and Ly, into (3)(5), we ob- of S1[27],[28]. These shapes are mapped on a unit circle in the

K1, K2)-Space (see, Fig. 3). The unit circle contains shapes wit
tain Fig. 3). The unit circl ins sh ith
B2 unit curvedness, and the rays through the origin contain iden-
E=1+ ﬁ tical shapes that differ in their curvedness, i.e., their sizes. For
; Zl example, as shown in Fig. 3, five well-known shape classes have
F=1+ “’;y the following shape index values: cup (0.0), rut (0.25), saddle
hZ (0.5), ridge (0.75), and cap (1.0). Diagrammatically, opposite
2 . Lo .
G =11 h_y points on the unit circle, denoted by the end points of the dotted
B h? lines, represent shapes that are each other’s “negative,” that is,
(2hehohes — h2h.s — h2hay) they have the same shape, but the opposite mold. Therefore, all
= R shapes can be mapped on the intewal € [0, 1]. In Fig. 3,
B (hTh hye + hyhohos — hohyhe. — thTJ) the f‘ne_gatlve” shapes are repr_esented t_)y light gray._A plane has
M= Ia vanishing curvedness and an indeterminate shape index.
(2h bl — B2he. — W2 ) The most important advantage of the shape index in shape
TRy y'tzz =y analysis is that the transition from one shape to another oc-
R curs continuously and, thus, the shape index can describe subtle
R =h? Ii Ih| = Z B2, ©6) shape variations effectively. For exampk = 0.875 repre-
T\ A2 sents the “dome” shape, which is a transient shape from ridge
7= =r,Yy,z

(51 =0.795tocap(SI = 1.0). Moreover, the volumetric shape
index introduced in this paper allows one to define the shape
index at every voxel in a volume without explicitly calculating
the iso-surface, because the definition of Sl is based on the cur-
vatures that are computed locally at the voxel as shown in (6)

1(p) =H(p) + vV H?*(p) — K(p) and (7). Therefore, the volumetric shape index captures the in-
/«aQ(p) =H(p) — /H%*(p) — K(p) (7) tuitive notion of local shape of an iso-surface at a voxel.

Then theprincipal curvatures:; (p) andr2(p) [30], [33] are
defined as
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saddle

Fig. 3. Relationship of representative shapes to the shape index values.

The curvedness represents how gently curved the iso-surfacel (e), rendered by perspective volume rendering and by the
is. The dimension of the curvedness is that of the reciprocdiape index. Voxels that have shape index values corresponding
of length, and its range ib-o0, oc[. Curvedness is a “dual” to the cap class are rendered white, those corresponding to ridge
feature to the shape index in that the shape index measuaes rendered light gray, and those corresponding to the other
“which” shape the local neighborhood of a voxel has, whereakasses are rendered dark gray. As expected, most portions of the
the curvedness measures “how much” shape the neighborhpotyp are rendered white, whereas folds and colonic walls are
includes. The curvedness also provides scale informationreadered light gray and dark gray, respectively. With this ren-
large negative value implies a very gentle change, whereadearing scheme, the polyps, folds, and colonic wall are clearly
large positive value implies a very sharp knife-like edge. separated, and the polyps are easily distinguishable from other

In the 3-D volumetric data, generally, polyps appear aructures.
bulbous, cap-like structures adhering to the colonic wall,
with small to medium curvedness, whereas folds appear Bs
elongated, ridge-like structures with large curvedness valuesThe characteristic values of the shape index for polyps are
The colonic walls appear as nearly flat, cup-like structures wittsed to segment the polyp candidates by usgsteresis thresh-
small curvedness values. Therefore, the shape index and dlding [34]. First, voxels that have shape index and curvedness
curvedness can differentiate among polyps, folds, and colon&lues between a predefined minimum and maximum are ex-
walls effectively. tracted asseed regionsWe set the minimum and maximum

Fig. 4 demonstrates the potential of the shape index in difireshold values for the shape index to 0.9 and 1.0, respectively,
ferentiating colonic structures. Fig. 4(a) and (d) shows axial Gb that we can select the regions that are in the cap class. The
images that contain a polyp in the region indicated by a bominimum and maximum threshold values for curvedness are set
Fig. 4(b) and (e) shows magnified views of the regions indso that the curvedness is within the range of targeted polyps, i.e.,
cated in Fig. 4(a) and (d). The polyps are indicated by arrowsinimum of 0.08 mm! (effective size of 12.5 mm) and max-
Fig. 4(c) and (f) represents 3-D endoscopic views of Fig. 4(bjum of 0.20 mnt! (effective size of 5.0 mm).

Segmentation of Polyp Candidates
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(©
®
Fig. 4. Demonstration of the effect of the shape index in differentiating between polyps, folds, and lumen. (a) and (d): Axial images with polppsés.the

(b) and (e) Polyps are indicated by arrows. (c) and (f) Three-dimensional endoluminal views of the polyps in (b) and (e) rendered by shape ingexintlea sha
clearly highlights the polyps (white), and differentiate them from folds (light gray) and colonic wall (dark gray).

(d) (e)

Starting with seed regions, hysteresis thresholding based on TABLE |
the shape index and curvedness is applied to the extracted colon THRESHOLDVALUES FOR THENAIOR PARAMETERS USED IN THE
C to obtain polyp candidates. The hysteresis thresholding ex-

tracts a set of spatially connected voxels to the seed regic Parameter Value

having shape index and curvedness values within the predefir — 09

minimum and maximum values that are callegrawable re- shape index minimum :

gion. This process is intended to extract a large connected co o, region maximum | 1.0

ponent that corresponds to the major portion of a polyp, b minimum 0.08 mm-!

cause the peripheral region of a polyp does not always shou curvedness maximum | 0.20 mm

perfect cap shape, but may show a dome-like shape. Thereft — :

we use a relaxed minimum threshold value of 0.8 for the sha shape index minimum | 0.8

index in order to include the skirts of the polyps connected ) maximum 1.0

the colonic walls or folds. Similarly, the peripheral region of ; Growable region minimum. | 0.05 mm-!

polyp may have curvedness values that are smaller or larger tl curvedness - »

those of the center region of a polyp. Therefore, the minimu maximum__| 0.25 mm

and maximum threshold values for curvedness are relaxed perging distance 12.5 mm

0.05 mnt! (effective size of 20 mm) and 0.25 mrh (effective

size of 4 mm), respectively, for identification of clinically sig- Fuzzy membership 0.8

nificant polyps. . 5
Table | shows the threshold values for the major paramete Minimum volume 38 mm

used in the segmentation process.

large number of small bumpy structures due to image noise.

Multiple detections are merged into a single candidate by
The polyp candidates may contain multiple detections, edmbining the detections that are located withinmarging

different locations, of the same polyp, and may include distance We use a merging distance of approximately 10

C. Clustering of Polyp Candidates
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mm, because, generally, multiple detections may occur
polyps larger than 10 mm. ~._

Then, we employ éuzzy c-means algorithfi35] to remove )
polyp candidates due to noise. Lgtp) denote the feature
vector of data pointp (i.e., a voxel in a polyp candidate). _
The fuzzy c-means algorithm groups the data poiptsvith
similar f(p) into a single cluste€; for somes. The similarity
between two data points and ¢ is defined by the similarity
measurei(p,q) = ||f(p) — f(qg)||, where|| - || represents the
Euclidean distance. For our purpose, the main advantage
the fuzzy clustering is that it defines a membership functic
U;(p) € [0, 1] for each data point and each clusteg;. If the
value oftf;(p) is large, it is likely thafp belongs to cluste€;.

To start the fuzzy clustering, we use the center of coordinai
for each polyp candidate, obtained from the segmentation ste|
the previous section, as the initial estimate of the cluster cente
Then, for each point, we initialize the membership function so
thatl;(p) = 1 if p belongs to théth candidate ant);(p) = 0 Fig.5. The calculation of GC and DGC features at operating poishased
otherwise. The feature values in eafflp) are normalized to the ©n considering the directions (angle. (p)) of the gradient vectorg;; over a

. distance rangfRmin, RBmax] in selected directiong® as described in the text.

range|0, 1]. The fuzzyc-means clustering takg&p) of all p as
input, and moves the cluster centers to the optimal location by
iteratively updating the membership functions and the locatidrave low values of the membership function for the candidates
of the cluster centers. This optimization is based on minimizirand, thus, the above thresholding operation generates small clus-
an objective function/ that represents the distance from anters. Thresholding with a minimum volume of approximately 35
given data point to a cluster center weighted by the value of then® is applied to individual clusters for removal of these small

membership function for the data point clusters. This minimum volume is equivalent to the volume of
a 4-mm polyp, which is small enough to keep the clinically sig-
icl nificant polyps that are 5 mm or larger.
J= Z ZUE(P)d(n c) Table | summarizes the threshold values for the major param-

— eters used in the clustering process.
=1 p

wherec; represents the center coordinate of clu§teand|C|is V- VOLUMETRIC FEATURES FORREDUCING FALSE POSITIVES
the number of polyp candidates. At each iteration, a new clusteroyr previous polyp detection scheme [17] discriminated be-

center tween polyps and FP findings by using the mean value of four
S pU2(p) features: the shape index, curvedness, CT value, and magnitude
S = L;p’ 1<i<C of the gradient of CT values. In the improved scheme, we intro-
Ep Uz (p) duce two new features that are based upon the concepaof
) ) ) dient concentratioffGC) [36]. The application of this method
is calculated and a new membership function for polyp detection is described in more detail in [26]. In short,
the GC feature at a poiptcharacterizes the overall direction of
1 ¢ =p the gradient vectors around It is defined by
—~ —1
U;(p) = E apa, -
) {Zl —jﬁ;“’g_;} G £ b
= Y max
GCp) =5 ; "™ (p) (10)
is obtained for 1< ¢ < C. Thenl;(p) is replaced wittif;(p), s 1 &
and the iteration continues. The iteration terminates when the i (P) = g}?gR ol ZCOS Pa(p) (11)
min <1< Rimax —

difference between the current and the previous values of the

objective function/ becomes less than a predefined threshold

value. whereD is the number of the symmetrically 3-D-oriented di-
The data pointg with the value of the membership func-rection vectorg* originating fromp. The angle/;;(p) is calcu-

tion higher than a threshold value, ¢/;(p) > m, for some lated between’ andg;;, whereg,, is the gradient vector located

4, are kept to yield the final clusters. By using the relativelgt distance from p in directiond’ (Fig. 5).

high threshold value: of 0.8, the fuzzy clustering process keeps The value of the GC feature is maximal at the center

the candidates due to noise as a small, isolated cluster, becaiisea Gaussian sphere. However, polyps often appear to be

they tend to contain voxels that have distinctly different fedaemispherical objects adhering to the colonic wall rather than

ture values from those of their surrounding voxels. These voxsigherical objects. Therefore, we have developed a modified GC
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@ (b) (©

Fig. 6. (a) Phantom with a complete Gaussian sphere and a Gaussian hemisphere. (b) Cut-plane view of the gradient concentration (GC) respamserof the ph
shown in (a). (c) Cut-plane view of the directional gradient concentration (DGC) response of the phantom shown in (a). In (b) and (c), regionsesioisgh
are rendered white while those of low response are rendered gray.

feature, called thairectional gradient concentratio(DGC), VI. DISCRIMINANT ANALYSIS

which is computed similarly to GC, as follows: In the final stage of our CAD scheme, discriminant analysis

D/2 based on 3-D volumetric feature statistics (FS) is carried out
DGC(p Z for reducing FPs among the polyp candidates. For this purpose,
T2 we employ linear discriminant analysis (LDA) and quadratic

{ |emax(p) —emax (p)]; e (p), e ,(p) > 0 discriminant analysis (QDA) [37].

D /2 i 1€iypso\P . L
e (p)felmx  (p);  otherwise. Letn denote the number of FSs used in the discriminant anal-

P)teiin)2 . . )
ysis, and letf; = (F}, F2,..., F') denote am-dimensional

Here, ¢j*** and )5 , are computed in opposite directiong,,-D) feature vector of the polyp candidatein which the com-

d" andd'+P/2. Phantom studies confirm that the DGC featurponentZ? represents thg-th FS value of the polyp candidate.

yields a higher response for hemispherical polyp-like objeciven atraining setwith known classes, LDA or QDA generates

than for complete spheres, whereas the opposite is true for &@ecision boundaryhat optimally partitions the feature space

conventional GC feature (Fig. 6). spanned by the features into two classes, i.e., a true-positive

The six features (shape index, curvedness, CT value, gradi€hf) class denoted b¥/r» and a FP class denoted by p. To

GC, and DGC) were characterized by use of nine statistics. lteis end, aiscriminant functiory(F’;):R" — R is generated,

s; represent a polyp candidate after fuzzy clustering, and lhich projects the:-D feature space to a scaldecision vari-

f7(p) represent the value of featuyé at voxelp. Let |s;| de- ablespace. The decision boundary is givendg¥’;) = 0.

note the number of voxels in candidate The following nine LDA uses the simplest type of discriminant function, called

statistics were used to characterﬁéin 85 a linear discriminant function, defined by
f’ ¢
mearis;, f7) =pui; = Z 9g(F;) =w'F;+c (12)
PEs;
min(s;, f7) = mm{ff( )} wherew is ann-D weight vectora® is the transpose af, and
i ; c is a constant vector. Given a training set of candidates that are
max(si, f*) =max{f"(p)} known to belong to eithe€rp or Crp, w is given by
: 1 :
var(s;, /) =02 = Hp) — pig)? -
( zvf ) 1J |SZ|—1]§(f (p) I’LZJ) w:(ETP+EFP) l(p’TP_p’FP)
J
skew(s;, f7) = Z <f ’“L”> where(p,p, Xrp) and(prp, L rp) are the mean feature vec-
| z| pEs; Tij tors of these samples and covariance matrices of the samples in

of g(F;) in terms of F;, the decision boundary for LDA forms

_yy )4 theCrp andCrp classes, respectively. Because of the linearity
7] 3
a hyperplane in the feature space. In QDA, on the other hand,

kurt(s;, f7) = =% |Z<fj —

pPES; j

entropy(s;, f/) = Z Prob{p}n(Prob{p}) is a quadratic discriminant function defined by
PES;
] 1
contrasts;, f7) = _ minlsi. /%) g(F) = =5 (Fi - prr) Srp (Fi = i)
lnax(sz, iid) 1

= (Fi — ppp) Spp (Fi — ppp) + ¢
max 10(s; Z fJ mg). 2
o/ ~10
and, thus, the decision boundary forms a hyperquadratic surface.
In the last equatioryn;, represent the voxels with the highestn the following, we will denote both types of discriminant func-
value(s) off? within s;. tions simply byg(F;).
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Geometrically, the discriminant functigr{ F7; ) is interpreted C. Evaluation of Discriminant Analysis

as proportional to the signed distance frdfnto the decision We evaluated the performance of the LDA and QDA in dif-
ﬁf{;;ﬁ?g tr?a?rfriz";’, ptgl(; pl)a:gec:t::j \\I/V%I:J desz(??;’i;hp?r(;ggrf ferentiating polyps from FPs by regarding the output of the dis-

. ! o o v criminant function as a decision variable, and subjecting the
tional to the ranked o_rdermg of the “kel.'hOOd t@"S a polyp. values of the discriminant functigf( F";) for each candidats;
Therefore, we c_Igss_|fy the polyp candidates into clagses . to receiver operating characteristic (ROC) analysis [38]. To es-
andC’rp b.y _part|t|o_n|ng the feature space through thresmld"}ﬂnate the unbiased performance, we trained and tested the clas-
of the decision variable as follows: sifiers for LDA and QDA by around-robin (or leave-one-oyt

method [39]. In this method, each candidatas removed, in

Crp ={F;; g(F;) > t} turn, from the set of all polyp candidatfs= {s;};<;<x . Here,

Crpp ={F;; g(F;) < t}. (13) K represents the nu_r_nber of _polyp candidate_s gfter the_fuzzy
clustering. The classifier is trained by the remaining candidates
O\{s;}, and a discriminant functiog(F';) is generated and
evaluated on the removed candidateThe set{g(F;)}, ;<
is subjected to the LABROC4 program [40], and the area under
the ROC curvé A,) is calculated. Generally, a largdr, value
indicates a higher performance in the discrimination task. The
A. Database of Polyps in CTC advantage of this method is that the training and testing of can-
idates can be completely separated; therefore, the resulting dis-

lected 43 CTC cases retrospectively at the University of Chica B‘mination criterion'is least biased to the cases in the'database.
Hospitals. These cases were obtained by use of a helical q,qther gdvantage is that aimost all of the polyp candidates are
scanner (GE CTi 9800, General Electric Medical Systems, Mﬂ‘ya'lable in this method.

waukee WI) with collimation of 5 mm, a pitch of 1.5-1.7, and re- _

construction intervals of 1.5-2.5 mm. The current was 100 miA. Evaluation of Overall Performance

with 120 kVp. A 180 linear interpolation and the standard re- e obtained the final detected polyps by determining the

construction algorithm were used. T_he colon was clea_nsed theshold value in (13). Correspondingly, we generated a free-
a standard precolonoscopy cleansing method and insufflajgd,onse ROC (FROC) curve that indicates the overall perfor-
with room air when the CT scanning was performed. Each Parance by using as the sweeping variable. For this purpose,
tient was scanned in both supine and prone positions. we first generated the discriminant functigf¥",) by use of the
Eleven of the cases contameq a Fotal of 12 .colqnos'copé(ﬁtire set of polyp candidates; }, . .. Then FROC curves
proven polyps of at least 5 mm in diameter. This size is tgare generated by the following two methods: 1) a FROC curve
lower limit of the size range for the polyps that are considergg <o on cases (patients) and 2) a FROC curve based on the vol-
to be clinically significant [3]. Nine polyps measured betweefnetric data sets. In both methods, the CAD scheme processed
5 and 10 mm; the other three measured 12, 25, and 30 MAY{ependently the supine and prone volumetric data sets gener-
Two experlenced radiologists examined the locations of these.q from a single patient to yield polyp candidates. In 1), a case
polyps in the CTC data sets. As a result, all of the polyps weygih nolyps was regarded as being correctly recognized as ab-
confirmed on the CT images, but three polyps were visible only, 3 it a polyp in the case was detected in either the supine or
in either the supine or prone view, because they were locateqiia hrone data set in the case. In 2), supine and prone data sets
a collapsed region or buried under the fluid in the other view, 4 case were considered as different data sets, and each data

Therefore, we had a total of 21 visible polyps. Because two g a5 considered to be correctly recognized as abnormal if a
these visible polyps were in a single data set, we had 20 C'ngp observed in the data set was detected.
data sets, among 86 data sets, with at least one visible polyp.

Each CTC data set covered the entire region of the abdomen,
from diaphragm to rectum, and consisted of 150-300 CT VIII. RESULTS
images with a matrix size of 512512. After the linear
interpolation along the axial direction, the dimension of A. Performance of the Detection of Polyp Candidates

the resulting isotropic volumes contained between 500 andrapie | summarizes the major parameter settings that were
700 voxels, and the physical resolution of these volumes Wasqq in the polyp segmentation process (Section IV-B) and the

0.5-0.75 mm/voxel. clustering process (Section IV-C). As a result of the polyp seg-
mentation process, all visible polyps were detected, except for
one polyp in the supine view of a patient. However, this missed
To determine the TPs and FPs in the computerized detectiopslyp was detected in the prone view of the same patient. There-
we determined the center coordinates of the TP polyps in edohe, all the polyps were detected in either the supine or prone
data set by the two radiologists. A CAD detection was considata set of a patient. The detection process produced 3162 FPs,
ered a TP if the distance between the detected polyp and ytelding approximately 37 FPs/data set, or 74 FPs/case. This
center of a true polyp was at most 15 mm. All other findingsumber was reduced after the clustering process, which yielded
were considered FPs. 1096 FPs, i.e., approximately 13 FPs/data set, or 26 FPs/case.

Those candidates that are classified in the polyp dlass are
reported as the final detected polyps by the CAD scheme.

VIl. PERFORMANCEEVALUATION

To evaluate the performance of our CAD scheme, we ccﬂ

B. Evaluation of the Detection of Polyp Candidates
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TABLE I results, was observed. It should be noted that we used CT
SELECTED RESULTS OFROC ANALYSIS. A, VALUES FOR SELECTED parameter settings that are currently used as a standard protocol
COMBINATIONS OF FEATURE STATISTICS . . . . .
for the CTC examinations [3]. This protocol is widely accepted
Feature-statistic combination | A,(L) | A,(Q) because it allows one to acquire CTC images in which the vis-
Us1, DGe , VT 0.95 | 0.95 ibility and conspicuity of clinically significant sizes of polyps
ps1, HCT » KGR 0.94 1 0.95 are high regardless of the CT scanner used for the acquisition
Hst>vor y g‘gg 8'32 process [41]. However, the visibility and conspicuity of polyps
Zii’ﬁiicﬁcivucv 0.92 | 0.93 may depend largely on the image acquisition parameters [16],
Selected results of ROC analysi$, values for selected combina- !:42]; thus, our CAD scheme may yle,ld a different performance_
tions of feature statistics are shown beloty. (L) and A . (Q) indi- if a nonstandard CT parameter setting is used. Further work is
cate thed . values obtained by LDA and QDA with round-robin test, s
respectively. Hergy andr represent the mean and variance statistics, needed for Clarlfymg the dependence O_f the performance of _the
respectively. The acronyms for the features are:=€TT value, GR CAD scheme on CTC parameter settings and for developing
= gradient magnitude, St shape index, C\= curvedness, DG& Fni :
directional gradient concentration. For example;; indicates the an Op-tImIZ.atIOI'] methoq of the CAD SCheme.’ such as the one
mean of shape index values whereasr indicates the variance of described in [43], for different parameter settings.
ctvalues. Reliable automated segmentation of the colonic walls is a
necessary first step for successful automated polyp detection.
B. Performance of Discriminant Analysis Our knowledge-guided technique presented in Section Il seg-

Table Il shows the results of the round-robin test for severn]ents the colonic walls at a thickness of 3-4 mm and excludes
ES combinations. Amona various combinations of the FSs th'%OSt or all of the extra-colonic components from the segmented

. ' g vari . ' "88lon. These characteristics of the technique yield a high sensi-
table lists only those combinations that show a high performanttlz\ﬁty and low FP rate in the detection of polyps. However, an
'[]D(ng:llgmng;ngrzoslﬁzs :QITtEeP?.'rThQZ }J/ aIL;ens di?];a?eecdo% evaluation of our colon segmentation method indicates that the

A c(c?l NS, res (\;vct'l ol ThIeS(It:sZt(ro)) shows the FS co FP rate could still be reduced by approximately 10% if all of

(. Z(Q)) umns, respectively. WShow The extra-colonic components remaining after the knowledge-
bination used in our CAD scheme reported previously [17]. Angided colon segmentation could be removed [26].

demonstrated in the other rows, use qf anew featur_e such as ur detection method based on the shape index (Section 1V)
mean of the DGC, and the new statistics of the previous featu[’;\esssumes that polvbs appear as a cap-like shape. i.e.. as polvooid
such as the variance of CT values, are shown to increasé.the POlyps app P Pe, 1.€., as polyp

lesions. Recently, clinical researchers are investigating flat le-

values of both LDA and QDA. sions that may have an incidence ranging between 8% and 30%,
and may have significantly different biologic features than poly-
C. Overall Performance poid lesions [44], [45]. These flat lesions have the potential to

To evaluate the overall performance of our CAD schemtransform to high-grade dysplasia quickly, and to invade the sub-
we generated FROC curves in the manner described in Sewicosa rapidly. They tend to be smaller than the typical poly-
tion VII-D. Among several combinations of FSs, the best resytpoid adenomas and therefore can be difficult to detect by con-
was obtained by applying the QDA to the feature space spanrvetitional colonoscopy. Radiologists have found that detecting
by the FSs in the first row of Table Il. The decision boundarffat regions is more difficult in CTC than in colonoscopy [46].
generated by QDA is shown by a black curve in Fig. 7(a)—(c). Mecause of the difficulty in finding the flat lesions in CTC and
shown in this figure, the decision boundary separates TPs (bldlok uncertainty of their clinical importance, we did not specif-
squares) from FPs (gray dots) well. Two FROC curves were geeally design our method to detect these lesions and, thus, our
erated [Fig. 7(d)]. The FROC curve showing the performané®AD may not be able to detect them effectively. Detection of
based on data sets is represented by a dotted curve, whereadlitdesions remains for future investigation when clinical studies
based on cases is represented by a solid curve. These FROGfirm the importance of the detection of these lesions for
curves indicate that the CAD scheme yielded 95% sensitiviggreening of colon cancers.
with 1.2 FPs/data set, or 100% sensitivity with 2.0 FPs/case. At the beginning of the clustering process, polyp candidates
within a predefined distance are merged to generate a single
detection from a polyp. However, we observed that multiple
detections may still occur from polyps larger than 20 mm. In

In this paper, we have presented a CAD scheme for the detthis study, the detection closest to the true polyp location was
tion of polyps in CTC. The high sensitivity and low FP rate iused as the detected polyp, and the others were considered as
our preliminary results show the promise of computerized dEPs. Simply relaxing the tolerance distance may merge a large
tection methods as a potential aid for interpreting CTC examiumber of FPs to TPs and, thus, may produce incorrect results
nations. in terms of sensitivity. This indicates that an additional method

In Section I, we described a process of generating aeds to be developed for reliable detection of a large polyp. The
isotropic volume that is used in the 3-D processing in thaurrent hysteresis thresholding scheme for segmenting polyps is
subsequent steps. This process also serves to eliminate lthsed on shape index and curvedness features alone. Therefore,
differences in the CT parameter settings—in patrticular, tlaepart of the local region that is more appropriate in identifying
reconstruction intervals—among different data sets. In opolyps with the other features could be excluded, which may in-
study, no significant visual difference, or difference in detectiatrease the FP rate. It is, thus, necessary to investigate whether

IX. DISCUSSION
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Fig. 7. (a)—(c) Distributions of the values of the three feature statistics for the polyp candidates obtained by our CAD scheme. TPs are reptd#aekted by
square boxes and FPs are represented by gray dots. Decision boundaries generated by QDA are shown by solid curves. Dotted curves show th# iso-surfaces
the discrimination function generated by QDA. (d) FROC curves generated from the result of QDA shown in (a)—(c). The solid curve represent®the detect
performance of the CAD scheme based on cases, whereas the dotted curve shows the performance based on data sets.

the polyp segmentation scheme needs to be modified to inclutes (Athlon MP 1.2 GHz, AMD, Sunnyvale CA), the whole
optimal regions for each feature. process of detecting polyps in a data set takes approximately 10
Other classifiers, such as neural networks, could be us@ih depending on the size of the volume.
to improve the FP rate of the polyp discrimination. However, We used only a small number of polyps in the evaluation of
proper use of neural networks requires large independent dahd overall performance of our CAD scheme and, thus, we are
representative sets of training and testing data. The size of timited in making generalizations about the detection accuracy
polyp database should therefore be increased before suctohour scheme. The FROC curves were generated by a consis-
analysis is attempted. tency test. No evaluation based on an independent database was
The current implementation of the CAD scheme has not beparformed. As indicated in Fig. 7(a)—(c), the TPs were quite
optimized for speed and efficiency. Using a PC workstatiatoncentrated in a small region in the feature space, which indi-
(Marquis K120-SR, ASL Inc., Newark CA) with dual proces<ates that the feature statistics characterize the true polyps well.
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Although our method appears promising, extension to a larggt1]
database will be needed for confirmation of the usefulness of
the CAD scheme for screening.

[12]
X. CONCLUSION

We have developed an improved CAD scheme for the detec-
tion of polyps in CTC. Based on clinical CTC cases, our CADI13]
scheme yielded a high performance of 100% sensitivity with 2.0
FPs/patient. If this result can be translated into a larger number
of cases, radiologists will need to interpret only a few regiong14]
indicated by the CAD scheme in a CTC examination. Such &
“second opinion” offered by a CAD scheme will substantially
reduce radiologists’ interpretation time and improve their per-
formance in the detection of colonic polyps in CTC. Therefore[16]
our CAD scheme has the potential of making CTC a viable op-
tion for screening of large patient populations, resulting in early
detection of colon cancers, and leading to reduced mortality dug7
to colon cancer.
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