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The classical surface curvature measures, such as the 
Gaussian and the mean curvature at a point of a surface, 
are not very indicative of local shape. The two principal 
curvatures (taken as a pair) are more informative, but 
one would prefer a single shape indicator rather than a 
pair of numbers. Moreover, the shape indicator should 
preferably be independent of the size i.e. the amount of 
curvature, as distinct from the type of curvature. We 
propose two novel measures of local shape, the ‘curved- 
ness’ and the ‘shape index’. The curvedness is a positive 
number that specifies the amount of curvature, whereas 
the shape index is a number in the range (-1, + I] and 
is scale invariant. The shape index captures the intuitive 
notion of ‘local shape’ particularly well. The shape index 
can be mapped upon an intuitively natural colour scale. 
Two complementary shapes (like stamp and mould) 
map to complementary hues. The symmetrical saddle 
(which is very special because it is self-complementary) 
maps to white. When a surface is tinted according to this 
colour scheme, this induces an immediate perceptual 
vegmentation of convex, concave, and hyperbolic areas. 
We propose it as a useful tool in graphics representation 
of 30 shape. 
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CLASSICAL SHAPE MEASURES 

Throughout this paper we deal exclusively with the 
curvature at a point of an (arbitrary) smooth surface. 
‘Smooth’ means at least twice continuous differentiabi- 
lity in this context*. 

We assume that the reader is familiar with the 
classical second order description of a smooth surface 
patch. The basic insights date from the 18th century, 
and are summarized elsewhere’-‘. 
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When you set out to describe shape, the first thing to 
do is to factor out position and attitude. This can be 
done by picking an apt reference frame. For instance, if 
you want to describe the shape at some fiducial point 
on a surface, then you would put the origin of your 
coordinate system at the fiducial point. By referring the 
surface to the local coordinate system you have 
effectively freed yourself of the (coincidental) position 
of the object. In a similar way, you may try to find an 
attitude of your coordinate frame that frees you of the 
incidental attitude of the object. Such a coordinate 
frame then has to be adapted somehow to the shape of 
the surface. By having the z-axis of your (Cartesian) 
coordimate system point along the outward normal of 
the surface you get rid of two degrees of (irrelevant!) 
freedom. You are left with a single ambiguity: the 
frame can still be rotated about the normal. This 
remaining ambiguity can be removed by closer investi- 
gation of the local surface. You end up with the 
following construction: at any point of the surface you 
may fit an (essentially unique, v, i.) principal frame, i.e. 
a triad of orthonormal vectors such that the initial part 
of the Taylor series describing the deviations from the 
tangent plane is of the form: 

2 = Jj (K, x2 + KAY') + O”(x, y) 

where the coordinates (x, y, z) are measured along the 
axes of the principal frame. To be exact, the fiducial 
surface point is taken as the origin. The coordinates 
(x, y) are measured along the frame vectors that 
together span the tangent plane, whereas the z co- 
ordinate is measured along the frame vector which is 
normal to the tangent plane. This is a so called ‘Monge- 
representation’ of the surface patch. 

Several conventions are helpful in avoiding confu- 
sions: 

l of the two possible choices of the orientation of 
the normal, we pick the outward normal; 

l of the two possible orientations of the frame as a 
whole, we take the right hand one; 

l for the larger part of this paper we retain the 
convention that K, 2 K~. 
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No generality has been sacrificed through the introduc- 
tion of these constraints on the description. As a result, 
there are still two possible choices of the frame left, for 
you may still invert both of the two tangential frame 
vectors simultaneously. Both choices lead to the same 
second order terms, but differences appear in the third 
and higher odd order terms. (These may be used to 
remove the remaining ambiguity if you want.) As far as 
the second order is concerned, you have arrived at an 
intrinsic description, which is quite insensitive to the 
incidents of position and attitude of the object. The 
remaining second order structure is a geometric 
invariant that may be regarded as a formal definition of 
what is meant by the habitus, or ‘local shape’. It is not 
completely general in the sense that we have decided 
on a metrical description, and stop at the second order. 
(In a way, that is our definition of ‘local’.) However, 
this certainly covers the overwhelming majority of 
applications. 

The scheme works at almost every point of a generic 
surface: only at certain isolated points, the so called 
umbilical points, do you encounter a degenerated 
situation. At an umbilicus you meet the condition 
KI = K2, thus any pair of orthonormal vectors span- 
ning the tangent plane may be substituted for the pair 
of tangentiai frame vectors. In the overwhelming 
majority of cases (‘probability one’) the so called 
principal directions, which are the tangential frame 
vectors, are uniquely defined. So called ‘flat points’, 
characterized through the condition K: = K? = 0, 

generically do not occur. So called ‘parabolic points’, 
characterized by the vanishing of one principal curva- 
ture, occur generically on curves, the so called ‘para- 
bolic lines’. Such curves are smooth loops that never 
intersect. The parabolic curves strictly separate regions 
of convexities K 1.2<& concavities (K~.~>O), and 
saddle-like points (K, and K? of different sign). 
Saddle-like shapes are also known as ‘hyperbolic’, 
whereas both concave and convex shapes are also 
known as ‘elliptic’. (Such facts can be gleaned from 
textbooks on the classical differential geometry of 
surfaces in 3-spaces”-h.) 

The coefficients tcI.z are known as the principal 
curvatures. They are the decisive parameters that fully 
describe local surface shape up to the second order 
modufo a rigid movement. 

The classical shape measures’,5 are: 

o the Gaussian curvature, which numerically equals 
the product of the principal curvatures. It also 
equals the determinant of the Hessian at the origin 
of z(x, y) in our representation: this reveals its 
invariant nature. It thus equals the square of the 
geometrical average of the principal curvatures; 

l the mean curvature, which numerically equals the 
arithmetic average of the two principal curvatures. 
It also equals the trace of the Hessian at the 
origin, which again reveals the invariant nature of 
this definition. 

It is perhaps not superfluous to remark here that the 
simple interpretation in terms of the Hessian (i.e. the 
symmetrical matrix of mixed second order partial 
derivatives of z(x, y) with respect to x and y) is only 
valid in representations where the magnitude of the 
gradient of z vanishes. (That is (a~/&)~ + (,?z/ 

~Y)~=O.) Otherwise, the expressions for the Gaus- 
sian and mean curvatures are more complicated, and 
contain both first and second partial derivatives of z(x, 
y) with respect to x and y. 

This second order structure suffices to determine the 
curvature of arbitrary planar sections of the surface 
through the fiducial oint. This involves Meusnier’s 
and Euler’s theorems’*“*‘. Euler’s theorem expresses 
the curvature of normal sections in terms of the 
principal curvatures and the angle of the section with 
respect to the principal directions. Meusnier’s theorem 
expresses the curvature of skew sections in terms of the 
obliquety. 

These measures possess a coordinate independent 
geometrical meaning. Of the many possible interpreta- 
tions we merely mention that the Gaussian curvature 
(K) specifies the ‘spread of normals’, i.e. the 
(oriented!) solid angle filled by all normals at an 
infinitesimal patch divided by the surface area of the 
patch. Likewise, the mean curvature (H) measures the 
spread of normals for the points of infinitesimal arcs, 
divided by the arc length, and averaged over all surface 
directions. These geometrical interpretations enable 
you to identify the Gaussian curvature as the 
continuous equivalent of the vertex curvature of a 
polyhedral vertex’, whereas the mean curvature, like- 
wise, is the continuous equivalent of the (average) 
polyhedral qdge curvature. 

The Gaussian curvature has a special property that 
accounts for the fact that most of the mathematical 
literature is almost completely dedicated to closer study 
of this curvature measure: it can be defined through 
metrical operations that are completely confined to the 
surface itself’. This remarkable fact thus says that the 
Gaussian curvature is intrinsic to the surface, and does 
not depend on the embedding in 3D space. For 
instance, bending a surface without stretching con- 
serves the Gaussian curvature, although this action 
definitely changes the ‘shape’ in the commonsense of 
the word. In this paper, any operation other than an 
isometry or similarity (change in size) is considered to 
destroy the shape. We will not be concerned with such 
‘deformations’. This removes the special significance of 
the Gaussian curvature. 

Neither the Gaussian nor the mean curvature, by 
themselves, capture the intuitive notion of ‘local shape’ 
very well. You need both to be able to construct the 
initial second order part of the Taylor series. If you 
want an idea of what the shape is, the best option is to 
compute the principal curvatures from the Gaussian 
and mean curvatures, and take it from there. (Clearly, 
you have K~.~-~HK,,~+K=O.) 

The classical curvature measures are very convenient 
if you happen to be involved in work of a mathematical 
nature (e.g. in intrinsic differential geometry, in the 
investigation of global properties of manifolds, etc.). 
They are less immediately useful in the case of the 
parametrization of extrinsic shape, however. 

C~RVEDNESS AND SHAPE INDEX 

Most people apparently accept the following statement 
as a self-evident truth: 

All spheres are of the same shape although they may 
differ in size 
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Figure I. (K,, K2)-phe. On a half ray at the origin 
you find shapes that are scaled copies of each other. 
Such similar surfaces are said to be of the same shape. 
Then ‘shape’ can be measured as a direction of a halfray 
in the (K,, KJ-plane. Every point is on a unique 

halfray, thus can be 
ascribed a unique 
shape, except the 
origin. Rut the 
origin represents 
the flat points, 
which - indeed - 
are of indeter- 
minate shape. The 
distance from the 
origin merely 
reflects a size 
change 

Such a usage of the word ‘shape’ implies a scaling 
invariance: intuitively, all local approximations for 
which the ratio of the principal curvatures is equal are 
of the same shape. 

This intuitive notion of shape is apparently based on 
a polar coordinate system in the (K,, K?) parameter 

plane. The direction encodes the shape, whereas the 
distance from the origin encodes the size’. To exploit 
this idea we temporarily drop the conventional order- 
ing K,>Kz and consider all possible second order 
forms. 

The following properties of the polar representation 
are especially noteworthy: 

the origin represents the uncurved patch, i.e. the 
planar point (see Figure 1). At a planar point the 
direction (shape) is indeterminate, as it should be: 
various infinitesimal perturbations may lead to 
qualitatively different shapes, thus ‘the shape’ at a 
planar point is really indeterminate; 
all points of a half-ray from the origin represent 
the same shape, although they differ in size (see 
Figure 1); 
diametrically opposite points at an equal distance 
from the origin represent surfaces that fit together 
snugly, as a ‘stamp’ and its corresponding ‘mould’, 
thus the second order shapes are also ‘opposite’, 
they are called ‘complementary’ in this paper (see 
Figure 2); 
points at an equal distance from the origin, related 
through a reflection at the axis K~ = K?, are 

Figure 2. Antipodal 
points on a circle 
with centre at the 
origin are related in 
a special way: they 
are ‘complemen- 
tary’ i.e. related as 
a mould and its 
stamp. They can be 
fitted into each 
other 

Figure 3. Two points on a circle with centre at the origin 
and related by a reflection on the K~ - ~~ = 0 axis are 
congruent. A right angle turn about the a-axis will bring 

them in superposi- 
IQ=K~ tion. Notice that 

shapes (a, -a) and 
(-a. a) are both 
complementary 
and congruent. 
You may superim- 
pose them in two 
different ways: flip- 
ping the height 
(reflection in 
xy-plane) or a right 
angle turn about 
the z-axis 

congruent. You may superimpose them after a 
right angle turn about the z-axis (see Figure 3). 
Since all points related through a permutation of 
K, and K? represent equal shapes, you need only 
consider half of the directions in the parameter 
plane. That is why we previously introduced the 
convention K, 3 K?; 

the direction K~ = -K? is special in the sense 
that points on this line at an equal distance from 
the origin are simultaneously complementary and 
congruent. These shapes ‘are their own moulds’, 
thus they do not come in distinct positive/negative 
pairs as all other shapes do. Inverting the surface 
(z(x; y)+ -2(x, y)) is (for the second order) 
equivalent to a ninety degree turn about the 
z-axis; 
if you disregard the fact that the surface is an 
oriented interface, dividing the material from the 
enveloping air, you may identify stamps and 
moulds. This is the usual course taken by authors 
of treatises on differential geometry. However, it 
is immediately obvious that this makes very little 
sense in most transactions with the material world, 
since a cup is for most practical purposes quite 
different from a cap, e.g. only the cup will hold 
tea. 

From these considerations it follows that you should 
not parametrize ‘shape’ by the (two-sided) rays of the 
(K,, K?)-plane. This would provide the shape space 
with the topology of P’, that is the projective line. In 
that case you would not distinguish inside from outside. 
Nor are the half-rays at the origin to be used. These 
would lead to a topology as that of the unit circle S’. In 
that case the same shape would appear twice in shape 
space. Rather, the space of shapes has the topology of 
D’ 1 that is the 1 -dimensional disc, or ‘linear segment’ in 
this case. This is most clearly brought out through the 
following definition of a shape index. 

2 K2+K, 
s = - arctan ~ (KI ) bK2 

T KZ - KI 

All patches, except for the planar patch which has an 
indeterminate shape index as should be, map on the 
segment s E [ - 1, +l]. This representation has many 
intuitively ‘natural’ properties: 
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l two shapes for which the shape index differs 
merely by sign represent complementary pairs 
that will fit together as ‘stamp’ and ‘mould’ when 
suitably scaled; 

l the shape for which the shape index vanishes - and 
consequently has indeterminate sign - represents 
the objects which are congruent to their own 
moulds; 

e convexities and concavities find their places on 
opposite sides of the shape scale. These basic 
shapes are separated by those shapes which are 
neither convex nor concave, that are the saddle- 
like objects. The transitional shapes that divide 
the convexities/concavities from the saddle-shapes 
are the cylindrical ridge and the cylindrical rut; 

l if shapes are drawn at random from an isotropic 
distribution in the (~.i, K&plane, then the shape 
index scale will be uniformly covered, thus the 
scale is ‘well tempered’. This follows immediately 
from the fact that the shape index s is directly 
proportional to the angle with the K~ +K~ = 

O-axis. 

For later reference, we also list here the following: 

l the extreme ends of the scale represent the 
‘umbilical points’. These look locally like either 
the outside (S = 1) or the inside (s = -1) of a 
spherical surface (a cap or cup). Notice that 
arbitrary small perturbations of these shapes 
invariably have the effect of moving the shape 
towards the cylindrical. Hence s = + 1 are true 
endpoints of the shape scale; 

l the cylindrical shapes are at s = 0.5 (ridge) and 
s = -0.5 (rut). For -0.5 <s<O you have saddle- 
ruts, for O<s<OS you have saddle-ridges. For 
OS< IsI< 1 the shapes are ellipsoidal, tending 
towards the spherical when 1s 1 approaches unity, 
to the cylindrical when IsI approaches 015. 

l the range - 1 <SC -0.5 represents the concavities 
(concave ruts, or trough-shapes), the range 
0.5 <S < 1 represents the convexities (convex 
ridges, or dome~shapes), whereas the range 
- 0.5 <s < 0.5 represents the saddle-like shapes 
(saddle ruts and ridges, with the symmetrical 
saddle at s = 0); 

l generically, the umbilics (IS 1 = 1) occur only at 
isolated points on the surface. The parabolic 
points (IsI = 0.5) occur on curves, of which there 
are two distinct types (S = &OS). These curves 
are smooth, closed loops on compact, smooth 
surfaces. They can be nested and juxtaposed, but 
(generically) never intersect. The symmetrical 
saddles (S = 0) also generically occur on curves 
(they are like the ‘zero crossings of the Laplacian’ 
so popular in image processing). The dome and 
trough shapes occur over areas that never touch 
each other. They are necessarily separated by 
saddle-like areas. 

In addition to the shape index, it makes sense to define 
an always positive number c, henceforth referred to as 
the ‘curvedness’, to specify the amount, or ‘intensity’ of 
the surface curvature. Although several alternative 
definitions would serve, we define the curvedness as 
the distance from the origin in the (K~, Kz)-plane. We 

propose: 

The scaling is such that the curvedness equals the 
absolute value of the reciprocal radius in the case of 
spheres. This makes it easy to develop an intuitive 
appreciation for the magnitude of the curvedness. Unit 
curvedness is ascribed to the unit sphere and unit 
YE:‘“=‘; (l’Q.~j = 1)~ whereas the unit c linder 

K? = 0) has only curvedness l/ Cy 2. The 
curvedness-is inversely proportional with the size of the 
object. 

Whereas the shape index scale is quite independent 
of the choice of a unit of length, the curvedness scale is 
not. Curvedness has the dimension of reciprocal length. 
In practice one has to point out some fiducial sphere as 
the ‘unit sphere’ to fix the curvedness scale. 

‘E:,e curvedness has some obvious properties that 
makes it a desirable curvature measure in an intuitive 
sense: 

l the curvedness vanishes only at the planar points. 
Recall that both the Gaussian and mean curvature 
also vanish at the planar points. The Gaussian 
curvature vanishes also on the parabolic curves, 
however, whereas the mean curvature also 
vanishes on the loci where the surface is locally 
minimal (that is, K] = -K~). But both at the 
parabolic points, and at the minimal points, the 
surface has a decidedly ‘curved look’ to most 
observers. This tends to be a perennial source of 
confusion to pupils of differential geometry 
classes. For a generic surface the curvedness 
vanishes nowhere. 

l the curvedness scales inversely with size; 
o the curvedness is trivially coordinate independent, 

i.e. it has true geometrical significance. 

Taken as a pair, the curvedness and the shape index 
specify the Iocal second order geometry, except for 
rigid motions, or congruences. Considered in isolation, 
the shape index does specify the local second order 
geometry up to a scaling factor, or similarity. 

In some cases the logarithm of the ratio of the 
curvedness to the curvedness of the fiducial sphere will 
be the most convenient parameter, especially if the 
range of curvednesses encountered in the application is 
very large. Intuitively, the curvedness diss~mifarity 
between a sphere and another sphere of double the 
diameter of the first one is independent of the absolute 
size. Thus a logarithmic transformation is quite natural. 
The shape index and this logarithmic measure may be 
considered as parameters of a conformaf image of the 
polar coordinates in the curvatures-plane. Thus rela- 
tions between similar shapes of similar sizes are as in 
the K,rc,-plane. We do not use such a representation 
in this paper, however. The discussion will mainly focus 
on the shape index. 

From our own psychophysical studies in shape 
recognition and discrimination (using such various cues 
as shading, motion parallax or binocular disparity) we 
find that a measure like the ‘shape index’ is much better 
suited than the classical shape measures if the intention 
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is to pinpoint visually meaningful local shape features. 
Even naive observers easily pick out shape-index 
extrema and are able to score broad classes of local 
shapes on this basis. Broad categories that can be used 
almost immediately are: the trough, the saddle rut, and 
ridge, and the dome shapes; where you take the 
spherical cup, the cylindrical rut and ridge, and the 
spherical cap as the ‘anchor-points’ of the scale. 

COLOUR SCALE FOR SI-IAPE CATEGORIES 

In many cases in which a fast and certain judgement of 
local shape is important, one would like to be able to 
‘colour’ the surface (on a graphics display) with the 
local shape. In our applications (medical image proces- 
sing and presentation) one is, for instance, interested in 
deviations from the normal surface shape of the left 
cardiac ventricle wall, even as a function of time. If the 
observer has to rely on ‘shape from shading’, etc. in a 
photographic realistic rendering of the object, this 
tends to be a very hard task. However, if one ‘paints’ 
the surface with the exact local shape the task is much 
alleviated and, in fact, almost trivial. In this section we 
propose a design for such a natural colour scale. 

One would like to have the following properties 
realized in such a scale: 

the three global classes of convexities, concavities 
and saddle shapes should perceptually segregate 
immediately (‘preattentively’). Thus they should 
be assigned hues that naturally group internally, 
whereas the groups should bear little affinity to 
each other; 
easily recognizable and nameable shapes should 
be assigned easily recognizable and nameablesY 
hues. The spontaneously nameable shapes are 
cup, cap, ridge, rut and saddle. The spontaneously 
nameable hues are red, green, blue, yellow and 
white; 
the extremes of the scale (convex and concave 
umbilicals) should stand out clearly; 
complementary shapes (shape indices differ only 
in sign) should be represented by complementary 
hues; 
the shape index scale should map on a continuous 
curve in colour space (local neighbourhood rela- 
tions are to be preserved). 

These requirements are rather restrictive. The first and 
last requirements might even seem to be incompatible. 
However, colour space has a natural stru~ture’~ that 
allows one to meet all requirements. There is only little 
leeway in the construction of a colour scale. Here is one 
way of reasoning that leads to an embedding of shape 
space in colour space that meets all requirements: we 
start by noting that the fourth requirement fully 
determines the hue to be assigned to the symmetrical 
saddle. Since this shape has no complementary it 
should be assigned an achromatic colour (white or 
grey). 

Because the elliptic and hyperbolic shapes are both 
mathematically and perceptually quite distinct, we 
would like to map them on equally distinct families of 
hues. In colour space one distinguishes the red-green 
family from the yellow-blue family. This insight was 

introduced in colour science by Hering”, and has 
indeed many and well confirmed roots in physiology 
and psychology. 

Since red is the most salient colour we (arbitrarily) 
assign it to the convex umbilical. Then the concave 
umbilics should be assigned green. (Actually more of a 
blue-green, However, precise colour naming” is not 
an important issue here.) Thus spherical shells will be 
tinted red on the outside, green on the inside. Concavi- 
ties in a globally convex region will stand out very 
distinctly. 

To assign colours to the other shapes we need to 
assign colours to the concave and convex cylindrical 
shapes (parabolic shapes). The other hues then follow 
by continuity. 

Since the symmetrical saddle has to be assigned 
white, the saddles must be mapped on a curve that 
crosses the colour triangle through the white point. If 
we let the endpoints of this curve be on the perimeter 
(spectral locus), the elliptical shapes will ail be of 
maximum saturation, and the distinction between 
hyperbolical and elliptical shapes will be evident. 

The elliptical and hyperbolical shapes appear percep- 
tually as almost orthogonal spaces. We may reflect this 
fact in the colour scale by using the red-green subspace 
for the elliptical and the yellow-blue subspace for the 
hyperbolical shapes. This is an apt choice, because the 
yellow-blue space indeed contains white in the middle. 
Since yellow is the centre of the red-green subspace we 
assign it to the convex cylinder. Then the convexities - 
map upon the range red-yellow, which is half of the 
red-green subspace. The concavities then map auto- 
matically on the complementary range green-biue. 
(Blue is the concave cylinder.) Thus the elliptical 
shapes map upon two disjoint ranges, that are con- 
nected by the saddles, just as they should. 

In this way the various relations between the shapes 
are nicely reflected by the quite similar relations (of 
complementarity and continuity in both space and 
natural subspaces) between the various colours. In 
Figure 4 the embedding of the shape index scale in 
colour space is indicated in a schematic fashion. There 
is remarkabiv little freedom for other than minor 
changes to this scale. The ony obvious major change 
that would meet the requirements is an inversion of the 
scale. 

The curvedness would naturally be represented by 
the intensity. For the intensity scale is a halfline just like 

Figure 4. Colour 
scale for shape 
mapped on the 
colour circle. 
Letters designate 
colours: R: red; 0: 
orange; Y: yellow; 
pY: pale yellow; 
W: white; pB: pale 
blue; B: blue; C: 

B 

cyan; G: green. 
Notice comple- 
mentary pairs R-G, 
O-C, Y-B, pY-pB, 
and the self-com- 
plementarity of W) 

PB W PY 
Y 
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the curvedness scale c E ](I, 031, moreover, at the origin 
both colour (hue) and shape (shape index) become 
undefined. With decreasing intensity (curvedness), all 
hues (shapes) become black (planar): thus black is a 
‘non-hue’ like planar is a ‘non-shape’. 

Natural as the intensity dimension appears, it also 
appears to be the case that human observers find it hard 
to use. The reason is that, for example, a brown is not 
perceived as an orange of low intensity, or an olive as a 
dark green, but these colours appear as distinct 
hues”.‘3. We have found that it works much better to 
keep the shape and size dimensions separate. The 
curvedness is best appreciated perceptually in a 
monochrome image with intensity representing curved- 
ness, the shape is best appreciated in a colour display 
with maximum intensity hues. An added reason is the 
different use.s of such displays: in the curvedness 
representation one looks for a smooth distribution, in 
the shape index representation one looks for a segmen- 
ration of the surface according to shape categories. The 
suggested representations are optimally adapted to 
such uses. 

Because one typically aims at a segmentation of a 
surface according to local shape, it makes sense to 
design a discrete scale with a limited number of shape 
categories. The simplest example is a three point scale: 
concave, saddle, convex. We have found that our 
observers easily (and reproducibly) use a finer scale. 
The categories shown in Table I are rather easy to 
remember and use. 

This is a nine-point scale on which subjects make 
hardly any mistakes when both principal curvatures are 
in an appropriate range (neither almost planar, nor too 
curved: of course, subjects cannot handle almost planar 
patches or needle tips). The scale is graphically 
represented in Figure 5. We show small inset figures of 
shapes taken from the midpoints of the bins to give a 
feeling for the habitus of the local surface from the 
various categories. These examples have equal curved- 
ness. 

In the rightmost column of Table 1 we have indicated 
the RGB-values that will yield the right hue on most 
colour devices. Excellent results are obtained on two 
bit per colour RGB-devices. On one bit per colour 
RGB-devices, the scale R-Y-W-B-C yields a natural 
and useful five-point scale. Thus software can be 
written that will adapt to the available hardware in a 
graceful manner. The red-yellow range is composed of 
long wavelength radiation, whereas the blue-green 

Spherical CUP Rut 

Figure 5. Illustration of shape 
index scale divided into nine 
categories: spherical cup, 
trough, rut, saddle rut, saddle, 
saddle ridge, ridge, dome and 
spherical cap. The inset figures 
are shapes of identical curved- 
ness, drawn from the centres of 
the categories. They are all 
placed in the same attitude, with 
the outward normal pointing 
up wards 

Trough Saddle rut Saddle ridge Dome 

-I 0 

Table 1. Shape categories 
~~e~~~jc Index range 

Sperhical cup se[-1, -X) 
Trough s E [ -%, --‘A) 
Rut Sf [4/N, --x4) 
Saddle rut SE [-‘A, -‘/A) 
Saddle SE[_‘/N, +‘A) 
Saddle ridge SE[+I/N, +x) 
Ridge self%, C%) 
Rome SE]+%, +7/x) 
Spherical cap se[+%, +1] 

Colorer name CR G W 

Green (0, 1. 0) 
Cyan (0, 1, ‘/2) 
Blue (0. 1, 1) 
Pale Blue (fi, 1,l) 
White (1. 1, 1) 
Pale Yellow (I, 1, %) 
Yellow (1, 1.0) 
Orange (I, v&O) 
Red (190, 0) 

range is composed of short wavelength radiation. This 
is an approximation of Ostwald’s’” longwave and 
shortwave ‘optimal colours’. 

One point one immediately notices is that the bins at 
the extremes of the scale are of only half the width of 
the other bins. Thus it might seem that this scale is 
uneven. This is partly true: if shapes are drawn ‘at 
random’ (e.g. (K,, K?) from an isotropic normal 
distribution with mean (0, 0)), then the bins at the 
extremes receive only half as many items as the other 
bins. From another point of view, the endpoints of the 
scale (s = ?l) are not at the edges but at the centres of 
the bins at the extremes. This is immediately obvious if 
you draw the bins in the tclrcl-plane: in this represen- 
tation all the bins subtend equal angular sectors, thus 
the scale is ‘equally tempered’ on the full circle. In the 
fully circular representation the bins on the inside of 
the s-scale appear twice, in two different orientations. 
For the shapes at the ends of the scale the orientation is 
very ill defined. Because the inner bins occur twice they 
collect twice as many samples. 

When you use a scale with an even number of bins 
you circumvent this problem. However, we prefer to 
have the ‘anchor points’ of the shape scale (the easily 
remembered and recognized cases) at the centres of the 
bins. For the bins at the extreme ends of the scale the 
“centres’ happen to be at the outer edges of these bins. 
The fact that the bins at the end are half as large as the 
other ones is of minor importance in practice. The 
really important fact is that the categories span equal 
ranges of shape variation (angles in the K] rc?-plane). 

EXAMPLES 

To illustrate the use and the convenience of the scale 
proposed in this paper we present a few examples. 
These examples have been picked to illustrate various 

Saddle Ridge Spherical cap 
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aspects of the new cu~ature measure especially well. 
That is why we have opted for synthetic data, rather 
than real data. 

The nine-point scale introduced in the previous 
section is illustrated in Plate 3 (see p. 565). The various 
relations between the colours (yellow-blue and red- 
green subspaces, complementaries, achromatic point) 
are very clear, and the reader is invited to verify them. 

T&axial ellipsoid 

The triaxial ellipsoid is one of the classical shapes from 
geometry and mathematical physics. Its main features 
are the locations of the principal axes and associated 
planes of (mirror) symmetry, and the four ‘circular 
points’. The circular points are special in the sense that 
any plane that is parallel to a tangent plane at a circular 
point and that intersects the ellipsoid does so with a 
circular cross section. This is most remarkable, because 
a plane drawn at random is almost sure to intersect the 
ellipsoid with an elliptical cross section. At the circular 
points the surface is umbilic (shape index unity). 

One would intuitively expect to encounter these 
major features in a plot of the classical curvature 
measures (Gaussian and mean curvature). Such is not 
the case, however. Only some vague indication of the 
symmetry planes is apparent. 

The shape index very clearly reveals the circular 
points (see Figure 6). They appear as local extrema of 
the shape index. Other extrema and saddlepoints of the 
shape index occur on the endpoints of the principal 
axes, just as in the cases of the Gaussian and mean 
curvature representations. The circular points are not 
revealed by plots of either the Gaussian, the mean, or 
either of the principal curvatures. 

In a colour representation most of the ellipsoid is 
orange, changing towards orange-yellow on the major 
equator, and with saturated red blobs at the circular 
points. 

Torus 

The case of the torus of revolution is of interest because 
it is one of the few well known classical shapes with a 
rather large hyperbolic patch. The torus has a pair of 
tangent planes that touch it along circles. These circles 
are parabolic curves, and divide the surface of the torus 
into two regions: a saddle-like region and a convex 
region. In the example (see Plate 2, p. 565) the 
proportions have been picked in such a way that the 

surface on the inner equator is locally of a symmetrical 
saddle shape {thus maps on white). 

At the parabolic points the surface is locally of the 
shape of a convex cylinder, with the cylinder axis along 
the parabolic curve. Thus these circles map on yellow. 
At the outer equator the surface is locally dome 
shaped, and thus maps on orange to orange-red. 

In this case, plots of the Gaussian curvature give very 
similar information as the shape index. 

Locai convexity 

The Gaussian of revolution is a convenient model for a 
local convexity on a globally planar surface (see Plate 3, 
p. 565). 

Because of the circular symmetry, the top of the 
Gaussian hill is an umbilical, and because it is convex it 
maps to red. At the inflections of the generating curve 
the surface has a (circular) parabolic curve. The local 
cylinder axes lie in planes through the symmetry axis, 
thus the surface is locally of a ridge shape and maps to 
yellow. The hyperbolic region at larger distances from 
the centre maps on pale yellowish to white. 

This pattern is characteristic for any local protrusion 
on a globally much less curved surface. 

Local concavity 

The inverted Gaussian of revolution is a convenient 
model for a local concavity on a globally planar surface 
(see Plate 4, p, 565). 

Because of the circular symmetry, the very bottom of 
the Gaussian pit is an umbilical, and because it is 
concave it maps to green. At the injections of the 
generating curve the surface has a (circular) parabolic 
curve. The local cylinder axes lie in planes through the 
symmetry axis, thus the surface is locally of a rut shape 
and maps to blue. The hyperbolic region at larger 
distances from the centre maps on pale blue to white. 

This pattern is characteristic for any local pit in a 
globally much less curved surface. Notice how corres- 
ponding points in Plates 3 and 4 are complementary 
coloured. 

Two types of parabolic curve 

In the previous two examples we demonstrated two 
different types of parabolic curves (‘yellow’ and ‘blue’ 
ones). It is one of the advantages of the colour scale 
that these two types (like convexities or concavities) are 

Figure 6. Curves of equal shape index on the triaxial ellipsoid in orthogonal projection on the XY, 
We use the American style ‘third angle projection’. Notice the striking rendering of the umbilicals 
the ellipsoid, and the e,xtremum on the equator where the local shape verges on the cylindrical 
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clearly distinguished. This is not the case for either the 
Gaussian or the mean curvature. 

In the -example of this section we show a surface 
patch where a concavity and a convexity almost meet 
(see Plate 5, p. 565; of course, they have to be 
separated by a hyperbolic region). 

The example is a perturbed ‘handkerchief surface’ 
(Rene Thorn’s mouchoir plie’ en quatre14). In the usual 
representations one tends to miss the crucial point that 
the two branches of parabolic curve are of opposite 
types. This fact is sufficient to see immediately that 
there has to be a curve of symmetrical saddles in the 
hyperbolic area (because yellow can only change to 
blue via white), and that no perturbation be imagined 
that would make the elliptical regions merge. 

CONCLUSION 

We have introduced a pair of novel measures of local 
surface shape: the ‘shape index’ and the ‘curvedness’. 
The measures describe the second order structure of 
the surface in the neighbourhood of any one of its 
points. The only points where this breaks down would 
be planar points, but these do not occur on generic 
surfaces (i.e. an infinitesimal perturbation is sufficient 
to remove them). 

The information contained in the shape index and 
curvedness are formally equivalent to either the two 
principal curvatures, or to the Gaussian and mean 
curvature taken as a pair. The major advantage of our 
proposal is that, unlike principal curvatures or Gaus- 
sian and mean curvature, size and shape are decoupled: 
the shape index specifies shape, quite independently of 
size, whereas the curvedness specifies the size. Other 
advantages are that the shape index does not depend on 
the (arbitrary) assignment of principal direction (e.g. 
interchanging the two principal curvatures leaves the 
shape index invariant), and that the salient curves 
defined by the Gaussian and the mean curvature 
(parabolic curves and minimal curves respectively) are 
reflected in curves of equal shape index (+0.5 and 0, 
respectively). Moreover, the parabolic curves (zero 
Gaussian curvature) are neatly distinguished as two 
different types by the shape index. Thus the shape 
index really carries all the relevant shape information, a 
single number suffices instead of two. 

An additional advantage is that the shape index scale 
is easily adapted to a categorical scale, and that the 
categories correspond to intuitively distinct shapes. We 
have exploited this fact in the design of a colour scale 

that enables a fast assessment of shape variations over 
the surface of an object. 

The main thrust of this paper then is the design of a 
greatly improved user interface in the display of smooth 
objects for the task of detecting shape variations. 
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