
Machine learning
approaches for Natural
language processing
Toxic Comment Classification Challenge

Sergii Makarevych
sermakarevich@gmail.com

mailto:sermakarevich@gmail.com

Toxic Comment Classification Challenge

Toxic comments example

'COCKSUCKER BEFORE YOU PISS
AROUND ON MY WORK'

Toxic

Stupid peace of shit stop deleting my
stuff asshole go die and fall in a hole
go to hell!

Severe Toxic

You are gay or antisemmitian?

Obscene

I think that your a Fagget get a oife
and burn in Hell I hate you 'm sorry
we cant have any more sex i'm
running out of conndoms

Threat

FUCK YOUR FILTHY MOTHER IN
THE ASS, DRY!

Insult

Kill all niggers. I have hard, that
others have said this.. should this be
included? That racists sometimes say
these.

Identity hate

One comment might belong to multiple categories.

HOW DOES IT WORK

from radar`s presentation

Machine learning approach

• Clear data
• lemmatization
• contractions
• tokenization

• Transform data
• counts
• TFIDF
• n-grams
• NB features

• Apply model
• Logistic regression

• Words polarity based on LR weights

Lemmatization

Lemmatization usually aiming to remove inflectional endings and to return
the base or dictionary form of a word, which is known as the lemma, with
the use of a vocabulary and morphological analysis of words.

>>> print(wnl.lemmatize('dogs'))
dog
>>> print(wnl.lemmatize('churches'))
church
>>> print(wnl.lemmatize('aardwolves'))
aardwolf
>>> print(wnl.lemmatize('abaci'))
abacus
>>> print(wnl.lemmatize('hardrock'))
hardrock

MORPHOLOGICAL_SUBSTITUTIONS = {
 NOUN: [('s', ''), ('ses', 's'), ('ves', 'f'), ('xes', 'x'),
 ('zes', 'z'), ('ches', 'ch'), ('shes', 'sh'),
 ('men', 'man'), ('ies', 'y')],
 VERB: [('s', ''), ('ies', 'y'), ('es', 'e'), ('es', ''),
 ('ed', 'e'), ('ed', ''), ('ing', 'e'), ('ing', '')],
 ADJ: [('er', ''), ('est', ''), ('er', 'e'), ('est', 'e')],
 ADV: []}

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Contractions

Tokenization

Splitting text into tokens (symbols/chars)

Counts

To generate tokens count - number of times a word/ chars occured in
each set of the corpus. after trasformation we have a matrix of the
same number of rows and number of columns equal to number of
unique words/tokens in the corpus unless we decided to truncate it. In
this case words with low frequency are out of the analysis.

Counts

words

chars

TFIDF
tfidf score = tf x idf
tf - the number of times a term occurs in a given document
idf - number of documents in a corpus / number of documents that contain term

The goal of using tf-idf is to scale down the impact of tokens that occur very frequently in a given
corpus and that are hence empirically less informative

http://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction

TFIDF

words

chars

n-grams

n-grams

words

chars

Naive Bayesian features

x = tfidf
r = np.log(P(y=1 | x) / P(y=0 | x))
x = x * r

Select rows which belong to class 0
Calculate average of each column

Select rows which belong to class 1
Calculate average of each column

Divide average_0 / average_1
Multiply each row by resulting vector

https://nlp.stanford.edu/pubs/sidaw12_simple_sentiment.pdf

Naive Bayesian features

words

chars

Words polarity based on LR weights

Words polarity based on LR weights, bi-grams

Words polarity based on LR weights, tri-grams

Words polarity based on LR weights, chars

Deep learning approach

• Pretrained words embeddings (word2vec)
• Data cleaning - minimize % of unknown tokens
• Data augmentation
• Apply model

• RNN
• GRU
• LSTM
• Other

• CNN
• HAN
• DPCNN

One hot encoding vs Embedings

Red -0.99 1.05 0.05 … 0.12

Yellow 0.22 0.76 -0.88 … -0.01

Green -0.08 -0.02 -0.52 … 0.54

One hot encoding: every unique token gets its own binary vector, so if corpus
contains 200 K tokens, resulting matrix is n x 200 000.

Embedings are just vectors with float numbers. To create unique vector we dont
need to have number of columns equal to number of unique tokens. We can
generate these vectors at random, feed them into neural network and learn what
values should be in those vectors. Like parameters to learn.

Word2vec

Given a specific word in the middle of a sentence (the input word), look at the
words nearby and pick one at random. The network is going to tell us the
probability for every word in our vocabulary of being the “nearby word” that we
chose. "nearby", is actually a "window size" parameter to the algorithm. A typical
window size might be 5, meaning 5 words behind and 5 words ahead (10 in total).

The output probabilities are going to relate to how likely it is find each
vocabulary word nearby our input word.

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

The network is going to learn the statistics from the number of times each pairing shows up

Word2vec

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Word2vec

https://nlp.stanford.edu/projects/glove/

The underlying concept that distinguishes man from woman, i.e. sex
or gender, may be equivalently specified by various other word
pairs, such as king and queen or brother and sister. To state this
observation mathematically, we might expect that the vector
differences man - woman, king - queen, and brother - sister
might all be roughly equal. This property and other interesting
patterns can be observed in the above set of visualizations.

Glove, Fasttext

In order to compute word vectors, you need a large text corpus. Depending
on the corpus, the word vectors will capture different information.

https://fasttext.cc/docs/en/unsupervised-tutorial.html
https://nlp.stanford.edu/projects/glove/

• 1 million word vectors trained on
Wikipedia 2017, UMBC webbase
corpus and statmt.org news dataset
(16B tokens).

• 1 million word vectors trained with
subword infomation on Wikipedia
2017, UMBC webbase corpus and
statmt.org news dataset (16B
tokens).

• 2 million word vectors trained on
Common Crawl (600B tokens).

• Wikipedia 2014 + Gigaword 5 (6B tokens,
400K vocab, uncased, 50d, 100d, 200d, &
300d vectors, 822 MB download): glove.
6B.zip

• Common Crawl (42B tokens, 1.9M vocab,
uncased, 300d vectors, 1.75 GB download):
glove.42B.300d.zip

• Common Crawl (840B tokens, 2.2M vocab,
cased, 300d vectors, 2.03 GB download):
glove.840B.300d.zip

• Twitter (2B tweets, 27B tokens, 1.2M vocab,
uncased, 25d, 50d, 100d, & 200d vectors,
1.42 GB download): glove.twitter.27B.zip

https://fasttext.cc/docs/en/unsupervised-tutorial.html

Data cleaning - minimize % of unknown tokens

'MOTHERFUCKERDIE': "motherfucker die"

Issues:

• errors / typos

• intentional caps

• hiden symbols

• or even two

• word written together

• overreaction

"FUCKK" : "FUCK"

"sUcks": “sucks" "suCks": "sucks"

"f*ck": "fuck"

"f**k": "fuck"

"MUAHAHAHAHAHAHAHAHAHAHAHAHAHAHAHAHA

Data augmentation

Data augmentation with images: rotation, zoom, flip horizontal/vertical, stretching

Data augmentation with text: translation into another language and back

RNN

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN vs LSTM

LSTM

GRU

OTHER

Hierarchical Attention Network

http://www.cs.cmu.edu/~./hovy/papers/16HLT-hierarchical-attention-networks.pdf

Convolutional Neural Network

Deep Pyramid
Convolutional

Neural
Networks

http://ai.tencent.com/ailab/media/publications/ACL3-Brady.pdf

Computation per layer is halved
after every pooling.

