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Toxic Comment Classification Challenge



Toxic comments example

'COCKSUCKER BEFORE YOU PISS 
AROUND ON MY WORK'

Toxic

Stupid peace of shit stop deleting my 
stuff asshole go die and fall in a hole 
go to hell!

Severe Toxic

You are gay or antisemmitian?

Obscene

I think that your a Fagget get a oife 
and burn in Hell I hate you 'm sorry 
we cant have any more sex i'm 
running out of conndoms

Threat

FUCK YOUR FILTHY MOTHER IN 
THE ASS, DRY!

Insult

Kill all niggers. I have hard, that 
others have said this.. should this be 
included? That racists sometimes say 
these.

Identity hate

One comment might belong to multiple categories.



HOW DOES IT WORK

from radar`s presentation



Machine learning approach

• Clear data 
• lemmatization 
• contractions 
• tokenization 

• Transform data 
• counts  
• TFIDF 
• n-grams 
• NB features 

• Apply model  
• Logistic regression 

• Words polarity based on LR weights



Lemmatization

Lemmatization usually aiming to remove inflectional endings and to return 
the base or dictionary form of a word, which is known as the lemma, with 
the use of a vocabulary and morphological analysis of words.

>>> print(wnl.lemmatize('dogs')) 
dog 
>>> print(wnl.lemmatize('churches')) 
church 
>>> print(wnl.lemmatize('aardwolves')) 
aardwolf 
>>> print(wnl.lemmatize('abaci')) 
abacus 
>>> print(wnl.lemmatize('hardrock')) 
hardrock 

MORPHOLOGICAL_SUBSTITUTIONS = { 
    NOUN: [('s', ''), ('ses', 's'), ('ves', 'f'), ('xes', 'x'), 
           ('zes', 'z'), ('ches', 'ch'), ('shes', 'sh'), 
           ('men', 'man'), ('ies', 'y')], 
    VERB: [('s', ''), ('ies', 'y'), ('es', 'e'), ('es', ''), 
           ('ed', 'e'), ('ed', ''), ('ing', 'e'), ('ing', '')], 
    ADJ: [('er', ''), ('est', ''), ('er', 'e'), ('est', 'e')], 
    ADV: []} 

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html



Contractions



Tokenization

Splitting text into tokens (symbols/chars)



Counts

To generate tokens count - number of times a word/ chars occured in 
each set of the corpus. after trasformation we have a matrix of the 
same number of rows and number of columns equal to number of 
unique words/tokens in the corpus unless we decided to truncate it. In 
this case words with low frequency are out of the analysis. 



Counts

words

chars



TFIDF
tfidf score  = tf x idf 
# tf - the number of times a term occurs in a given document 
# idf - number of documents in a corpus / number of documents that contain term 

The goal of using tf-idf is to scale down the impact of tokens that occur very frequently in a given 
corpus and that are hence empirically less informative

http://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction



TFIDF

words

chars



n-grams



n-grams

words

chars



Naive Bayesian features

x = tfidf 
r = np.log( P(y=1 | x) / P(y=0 | x )) 
x = x * r

Select rows which belong to class 0 
Calculate average of each column 

Select rows which belong to class 1 
Calculate average of each column 

Divide average_0 / average_1 
Multiply each row by resulting vector

https://nlp.stanford.edu/pubs/sidaw12_simple_sentiment.pdf



Naive Bayesian features

words

chars



Words polarity based on LR weights



Words polarity based on LR weights, bi-grams



Words polarity based on LR weights, tri-grams



Words polarity based on LR weights, chars



Deep learning approach

• Pretrained words embeddings (word2vec) 
• Data cleaning - minimize % of unknown tokens  
• Data augmentation 
• Apply model 

• RNN 
• GRU 
• LSTM 
• Other 

• CNN 
• HAN 
• DPCNN



One hot encoding vs Embedings

Red -0.99 1.05 0.05 … 0.12

Yellow 0.22 0.76 -0.88 … -0.01

Green -0.08 -0.02 -0.52 … 0.54

One hot encoding: every unique token gets its own binary vector, so if corpus 
contains 200 K tokens, resulting matrix is n x 200 000. 

Embedings are just vectors with float numbers. To create unique vector we dont 
need to have number of columns equal to number of unique tokens. We can 
generate these vectors at random, feed them into neural network and learn what 
values should be in those vectors. Like parameters to learn.



Word2vec

Given a specific word in the middle of a sentence (the input word), look at the 
words nearby and pick one at random. The network is going to tell us the 
probability for every word in our vocabulary of being the “nearby word” that we 
chose. "nearby", is actually a "window size" parameter to the algorithm. A typical 
window size might be 5, meaning 5 words behind and 5 words ahead (10 in total). 

The output probabilities are going to relate to how likely it is find each 
vocabulary word nearby our input word.

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

The network is going to learn the statistics from the number of times each pairing shows up



Word2vec

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



Word2vec

  
https://nlp.stanford.edu/projects/glove/

The underlying concept that distinguishes man from woman, i.e. sex 
or gender, may be equivalently specified by various other word 
pairs, such as king and queen or brother and sister. To state this 
observation mathematically, we might expect that the vector 
differences man - woman, king - queen, and brother - sister 
might all be roughly equal. This property and other interesting 
patterns can be observed in the above set of visualizations. 



Glove, Fasttext

In order to compute word vectors, you need a large text corpus. Depending 
on the corpus, the word vectors will capture different information.

https://fasttext.cc/docs/en/unsupervised-tutorial.html  
https://nlp.stanford.edu/projects/glove/

• 1 million word vectors trained on 
Wikipedia 2017, UMBC webbase 
corpus and statmt.org news dataset 
(16B tokens). 

• 1 million word vectors trained with 
subword infomation on Wikipedia 
2017, UMBC webbase corpus and 
statmt.org news dataset (16B 
tokens). 

• 2 million word vectors trained on 
Common Crawl (600B tokens).

• Wikipedia 2014 + Gigaword 5 (6B tokens, 
400K vocab, uncased, 50d, 100d, 200d, & 
300d vectors, 822 MB download): glove.
6B.zip 

• Common Crawl (42B tokens, 1.9M vocab, 
uncased, 300d vectors, 1.75 GB download): 
glove.42B.300d.zip 

• Common Crawl (840B tokens, 2.2M vocab, 
cased, 300d vectors, 2.03 GB download): 
glove.840B.300d.zip 

• Twitter (2B tweets, 27B tokens, 1.2M vocab, 
uncased, 25d, 50d, 100d, & 200d vectors, 
1.42 GB download): glove.twitter.27B.zip

https://fasttext.cc/docs/en/unsupervised-tutorial.html


Data cleaning - minimize % of unknown tokens 

'MOTHERFUCKERDIE': "motherfucker die"

Issues: 

• errors / typos 

• intentional caps 

• hiden symbols  

• or even two 

• word written together 

• overreaction

"FUCKK" : "FUCK"

"sUcks": “sucks" "suCks": "sucks"

"f*ck": "fuck"

"f**k": "fuck"

"MUAHAHAHAHAHAHAHAHAHAHAHAHAHAHAHAHA



Data augmentation

Data augmentation with images: rotation, zoom, flip horizontal/vertical, stretching

Data augmentation with text: translation into another language and back



RNN

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



RNN vs LSTM



LSTM



GRU



OTHER

Hierarchical Attention Network

http://www.cs.cmu.edu/~./hovy/papers/16HLT-hierarchical-attention-networks.pdf

Convolutional Neural Network

Deep Pyramid 
Convolutional 

Neural 
Networks 

http://ai.tencent.com/ailab/media/publications/ACL3-Brady.pdf

Computation per layer is halved 
after every pooling.


