Deployment Platform: Render ✅

I am trying to develop a phone classifier model for my university project. I’ve already trained my model and I encountered a problem when I am trying to deploy the model by executing python app/server.py serve. I read a post(Unexpected key(s) in state_dict: "model", "opt") and I suspect the problem is due to different fast.ai version running between my anaconda and Google Colab.

Therefore,I’ve tried to check the version of fastai in my computer by using pip list fastai, conda list fastai and import fastai; fastai. version in my Google colab(I used Google Colab to develop my model) but the results are the same(fastai version = 1.0.59). I even tried to update my fastai version in Google Colab but in vain. Here is the exception code:

Traceback (most recent call last):
  File "app/server.py", line 37, in <module>
    learn = loop.run_until_complete(asyncio.gather(*tasks))[0]
  File "C:\ProgramData\Anaconda3\lib\asyncio\base_events.py", line 584, in run_until_complete
    return future.result()
  File "app/server.py", line 32, in setup_learner
    learn.load(model_file_name)
  File "C:\ProgramData\Anaconda3\lib\site-packages\fastai\basic_train.py", line 279, in load
    get_model(self.model).load_state_dict(state, strict=strict)
  File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 845, in load_state_dict
    self.__class__.__name__, "\n\t".join(error_msgs)))
RuntimeError: Error(s) in loading state_dict for Sequential:
        Missing key(s) in state_dict: "0.0.weight", "0.1.weight", "0.1.bias", "0.1.running_mean", "0.1.running_var", "0.4.0.conv1.weight", "0.4.0.bn1.weight", "0.4.0.bn1.bias", "0.4.0.bn1.running_mean", "0.4.0.bn1.running_var", "0.4.0.conv2.weight", "0.4.0.bn2.weight", "0.4.0.bn2.bias", "0.4.0.bn2.running_mean", "0.4.0.bn2.running_var", "0.4.1.conv1.weight", "0.4.1.bn1.weight", "0.4.1.bn1.bias", "0.4.1.bn1.running_mean", "0.4.1.bn1.running_var", "0.4.1.conv2.weight", "0.4.1.bn2.weight", "0.4.1.bn2.bias", "0.4.1.bn2.running_mean", "0.4.1.bn2.running_var", "0.4.2.conv1.weight", "0.4.2.bn1.weight", "0.4.2.bn1.bias", "0.4.2.bn1.running_mean", "0.4.2.bn1.running_var", "0.4.2.conv2.weight", "0.4.2.bn2.weight", "0.4.2.bn2.bias", "0.4.2.bn2.running_mean", "0.4.2.bn2.running_var", "0.5.0.conv1.weight", "0.5.0.bn1.weight", "0.5.0.bn1.bias", "0.5.0.bn1.running_mean", "0.5.0.bn1.running_var", "0.5.0.conv2.weight", "0.5.0.bn2.weight", "0.5.0.bn2.bias", "0.5.0.bn2.running_mean", "0.5.0.bn2.running_var", "0.5.0.downsample.0.weight", "0.5.0.downsample.1.weight", "0.5.0.downsample.1.bias", "0.5.0.downsample.1.running_mean", "0.5.0.downsample.1.running_var", "0.5.1.conv1.weight", "0.5.1.bn1.weight", "0.5.1.bn1.bias", "0.5.1.bn1.running_mean", "0.5.1.bn1.running_var", "0.5.1.conv2.weight", "0.5.1.bn2.weight", "0.5.1.bn2.bias", "0.5.1.bn2.running_mean", "0.5.1.bn2.running_var", "0.5.2.conv1.weight", "0.5.2.bn1.weight", "0.5.2.bn1.bias", "0.5.2.bn1.running_mean", "0.5.2.bn1.running_var", "0.5.2.conv2.weight", "0.5.2.bn2.weight", "0.5.2.bn2.bias", "0.5.2.bn2.running_mean", "0.5.2.bn2.running_var", "0.5.3.conv1.weight", "0.5.3.bn1.weight", "0.5.3.bn1.bias", "0.5.3.bn1.running_mean", "0.5.3.bn1.running_var", "0.5.3.conv2.weight", "0.5.3.bn2.weight", "0.5.3.bn2.bias", "0.5.3.bn2.running_mean", "0.5.3.bn2.running_var", "0.6.0.conv1.weight", "0.6.0.bn1.weight", "0.6.0.bn1.bias", "0.6.0.bn1.running_mean", "0.6.0.bn1.running_var", "0.6.0.conv2.weight", "0.6.0.bn2.weight", "0.6.0.bn2.bias", "0.6.0.bn2.running_mean", "0.6.0.bn2.running_var", "0.6.0.downsample.0.weight", "0.6.0.downsample.1.weight", "0.6.0.downsample.1.bias", "0.6.0.downsample.1.running_mean", "0.6.0.downsample.1.running_var", "0.6.1.conv1.weight", "0.6.1.bn1.weight", "0.6.1.bn1.bias", "0.6.1.bn1.running_mean", "0.6.1.bn1.running_var", "0.6.1.conv2.weight", "0.6.1.bn2.weight", "0.6.1.bn2.bias", "0.6.1.bn2.running_mean", "0.6.1.bn2.running_var", "0.6.2.conv1.weight", "0.6.2.bn1.weight", "0.6.2.bn1.bias", "0.6.2.bn1.running_mean", "0.6.2.bn1.running_var", "0.6.2.conv2.weight", "0.6.2.bn2.weight", "0.6.2.bn2.bias", "0.6.2.bn2.running_mean", "0.6.2.bn2.running_var", "0.6.3.conv1.weight", "0.6.3.bn1.weight", "0.6.3.bn1.bias", "0.6.3.bn1.running_mean", "0.6.3.bn1.running_var", "0.6.3.conv2.weight", "0.6.3.bn2.weight", "0.6.3.bn2.bias", "0.6.3.bn2.running_mean", "0.6.3.bn2.running_var", "0.6.4.conv1.weight", "0.6.4.bn1.weight", "0.6.4.bn1.bias", "0.6.4.bn1.running_mean", "0.6.4.bn1.running_var", "0.6.4.conv2.weight", "0.6.4.bn2.weight", "0.6.4.bn2.bias", "0.6.4.bn2.running_mean", "0.6.4.bn2.running_var", "0.6.5.conv1.weight", "0.6.5.bn1.weight", "0.6.5.bn1.bias", "0.6.5.bn1.running_mean", "0.6.5.bn1.running_var", "0.6.5.conv2.weight", "0.6.5.bn2.weight", "0.6.5.bn2.bias", "0.6.5.bn2.running_mean", "0.6.5.bn2.running_var", "0.7.0.conv1.weight", "0.7.0.bn1.weight", "0.7.0.bn1.bias", "0.7.0.bn1.running_mean", "0.7.0.bn1.running_var", "0.7.0.conv2.weight", "0.7.0.bn2.weight", "0.7.0.bn2.bias", "0.7.0.bn2.running_mean", "0.7.0.bn2.running_var", "0.7.0.downsample.0.weight", "0.7.0.downsample.1.weight", "0.7.0.downsample.1.bias", "0.7.0.downsample.1.running_mean", "0.7.0.downsample.1.running_var", "0.7.1.conv1.weight", "0.7.1.bn1.weight", "0.7.1.bn1.bias", "0.7.1.bn1.running_mean", "0.7.1.bn1.running_var", "0.7.1.conv2.weight", "0.7.1.bn2.weight", "0.7.1.bn2.bias", "0.7.1.bn2.running_mean", "0.7.1.bn2.running_var", "0.7.2.conv1.weight", "0.7.2.bn1.weight", "0.7.2.bn1.bias", "0.7.2.bn1.running_mean", "0.7.2.bn1.running_var", "0.7.2.conv2.weight", "0.7.2.bn2.weight", "0.7.2.bn2.bias", "0.7.2.bn2.running_mean", "0.7.2.bn2.running_var", "1.2.weight", "1.2.bias", "1.2.running_mean", "1.2.running_var", "1.4.weight", "1.4.bias", "1.6.weight", "1.6.bias", "1.6.running_mean", "1.6.running_var", "1.8.weight", "1.8.bias".
        Unexpected key(s) in state_dict: "opt_func", "loss_func", "metrics", "true_wd", "bn_wd", "wd", "train_bn", "model_dir", "callback_fns", "cb_state", "model", "data", "cls".

My fastai version is same as fastai version in Google colab but I still get the same problem.I expect my model to be deployed on my local server.

I copied this from the question that I posted at StackOverflow a few days ago but seems no one help me. Please help me figure out what wrong with this. Thank you so much!

1 Like