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ABSTRACT

We present observations and discussion of previously unreported phenomena dis-
covered while training residual networks. The goal of this work is to better under-
stand the nature of neural networks through the examination of these new empir-
ical results.1 These behaviors were identified through the application of Cyclical
Learning Rates (CLR) and linear network interpolation. Among these behaviors
are counterintuitive increases and decreases in training loss and instances of rapid
training. For example, we demonstrate how CLR can produce greater testing ac-
curacy than traditional training despite using large learning rates.

1 INTRODUCTION

A core branch of physical sciences over the centuries has been the development of tools to experi-
mentally probe invisible aspects of nature. Revolutionary discoveries, such as the structure of atoms
and DNA, would not have been possible without clues from previous experimental evidence.

Currently, most deep learning experimental results are reported in a limited number of standard
ways. When using convolutional neural networks (CNNs) for classification, authors generally report
the top-k accuracy or error/loss on held out test or validation samples after training the network.
Optionally, a plot of these values over the course of training is provided. Though it is certainly
important to report these results because they are a measure of success, we argue that it is valuable
to take a new perspective: to investigate and report additional behaviors during training.

(a) Test accuracy during standard training for three
different initial learning rates.

(b) Test accuracy for learning rate range =0.001 - 1
for ResNet-52, ResNet-56, and ResNet-60.

Figure 1: Test accuracies for ResNet-56 on Cifar-10

While running experiments on Cifar-10 with a ResNet-56 architecture using Caffe (?) we noticed
some unusual behavior and decided to investigate it. Experiments with various learning rates (LR)
illustrate this unusual behavior, which can be seen in Figure 1a. When using an initial LR of 0.14
(the yellow curve in Figure 1a), the test accuracy climbs, then dips, and then continues to increase,
which is unlike the curves for LR = 0.24 or 0.35. This strange phenomena caused us to look at the
data in new ways and discover additional surprising results.

The learning rate (LR) range test and cyclical learning rates (CLR) are described in (Smith, 2015)
and (Smith, 2017). In a LR range test, training starts with a very small learning rate which is

1Files to replicate these results are available at https://github.com/lnsmith54/exploring-loss
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then linearly increased throughout training. This provides information on how well the network
converges over a range of learning rates. By starting with a small LR, the network starts converging,
and as the LR rate becomes too large, it causes the training/test accuracies to decrease and the losses
to increase. To investigate this dip in accuracy with certain learning rates, our first step was to run a
learning rate range test (see Figure 1b), which displays two noteworthy features. First is the dip in
accuracy around LR=0.1. Second is the consistently high test accuracy over a large span of learning
rates (LR = 0.25 to 1.0), which is unusual.

(a) Cyclical learning rate between LR=0.1 and
LR=0.35 with stepsize=10K.

(b) Super-convergence with CLR = 0.1 - 1.0
(stepsize=10k) versus standard training with initial
LR=0.35.

Figure 2: Test accuracies for ResNet-56 on Cifar-10. Note the log scale used for the vertical axis.

2 SUPER-CONVERGENCE

Our next step was to try cyclical learning rates with a triangular policy for a number of cycles with
the LR between 0.1 and 0.35. A triangular policy is a learning rate schedule that repeatedly linearly
increases then decreases the learning rate between specified bounds (i.e., a minimum and maximum
learning rate). A cycle consists of two steps and the stepsize is the number of iterations over which
the learning rate transitions from the minimum to the maximum value or vice versa.

Several counterintuitive results appear in Figure 2a, which shows the test accuracy, test loss, and
training loss for CLR with a stepsize of 10,000 iterations. This Figure shows an anomaly that occurs
as the LR increases from 0.1 to 0.35. The training loss increases sharply by four orders of magnitude
at a learning rate of approximately 0.255 (note the log scale used for the vertical axis) but training
convergence resumes at larger learning rates. In addition, there are divergent behaviors between test
accuracy and loss curves that are not easily explained. In the first cycle, when the learning rate is
increasing from 0.13 to 0.18, the test loss increases but the test accuracy is also increasing. This
simultaneous increase in both the test loss and test accuracy also occurs in the second cycle as the
learning rate decreases from 0.35 to 0.1 and in various portions of subsequent cycles.

Another surprising result can be seen in Figure 2b. The red curve in this figure shows a run with a
triangular policy and a stepsize of 10,000 iterations (LR is between 0.1 and 1.0, as indicated at the
top of the figure). The red curve shows rapid training of the network with a final test accuracy of
93% in only one cycle of 20,000 iterations. For comparison, the blue curve shows a typical training
process with an initial learning rate of 0.35, which drops by a factor of 10 at iterations 50,000,
75,000, and 85,000, and the final test accuracy is only 91%. We coin the term “super-convergence”
to refer to this phenomenon where a network is trained to a better final test accuracy compared to
traditional training but with fewer iterations and a much larger learning rate.

3 NETWORK INTERPOLATION

On the basis of our findings described above, we believe it is reasonable to wonder if the solutions
at each of the five peaks in Figure 2b are just the same minimum being rediscovered. We adopted
the method of Goodfellow et al. (2014) and Im et al. (2016) to compare the solutions obtained at the
end of each learning rate cycle (i.e., at iterations 20, 000, 40, 000, ...). Briefly, a series of network
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configurations were created by performing an element-wise linear interpolation between a pair of
solution weights (i.e., netnew = α ∗ net1 + (1 − α) ∗ net2, for a range of α values). If the pair of
solutions represent the same minimum, interpolation should show a single concave shape, as seen in
Figure 3a, which is the result of interpolating between states found during a regular training process.
If there is a “peak” in loss between the two solutions, as seen in Figure 3b, then the two minima are
different solutions. We found that the solution at the end of each cycle is distinct, which is in line
with the results reported in (Im et al., 2016), where the authors show that different initializations
lead to different solutions. Since the network is initialized differently at the beginning of each cycle,
it is intuitive that each cycle produces a different solution.

(a) Training and test loss for interpolations between
two network states from regular ResNet training af-
ter 10,000 and 25,000 iterations.

(b) Training and test loss for interpolations between
two CLR “solutions” - after 40,000 and 60,000 iter-
ations, as seen in Figure 2b.

Figure 3: Results of network interpolation for differently trained networks.

The shape seen in Figure 3b reveals an additional noteworthy feature: some amount of regularization
is possible through interpolating between two solutions. The minima for training loss are at α
= 0.0 and 1.0, as expected, but the test loss minima are slightly offset, towards the center. This
was consistent for all interpolations between minima found by CLR. We are still investigating the
causes of this phenomenon but it implies that interpolating between two such minima can improve
performance and this might be useful for regularization.

Another relevant feature shown in Figure 3a is that the training and test loss minimum were consis-
tently close to the center. This is in line with the results shown in Goodfellow et al. (2014) (Figures 1
and 2), though the authors do not discuss this not its potential to improve test accuracy. This behav-
ior leads us to believe that interpolation of weights at different iterations could be used to improve
the quality of solutions found during regular training, in addition to those solutions found by CLR.

4 CONCLUSION

This paper shows new phenomena obtained with ResNet-56 on Cifar-10 while using cyclical learn-
ing rates and the learning rate range test. We believe that the underlying reasons for these observed
patterns are a reflection of the loss function topology and that a continuously changing learning rate
provides information about this topology. Furthermore, we believe that this loss function topology
information will lead to insights in training neural networks and we are actively searching for a
collaborator to help us produce a theoretical analysis of these phenomena.

The results presented here represent just a fraction of the results we have obtained. Similar re-
sults are obtained using ResNet-20, ResNet-56, and ResNet-110 on Cifar-10 and Cifar-100. We are
cataloging the effect of different solvers, hyper-parameter values, and architectures. Every archi-
tecture, hyper-parameter value assignment, and data-set has its own patterns; some of them follow
a usual pattern and others follow an unusual/unexpected pattern. In addition, we are investigating
if the phenomena of high accuracies over a large range of learning rates (from the LR range test)
might provide a measure of an architecture’s robustness during training. While our work has so far
been with Caffe, we plan to perform equivalent investigations with other frameworks (e.g., Tensor-
Flow, Torch, MXNet). Furthermore, we are continuing to investigate how interpolation of network
weights can be used to improve a network’s performance. The results of these investigations are
being compiled into an NRL Technical Report and will be publicly released.
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